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Computational microstructure models have been actively pursued by the pavement mechanics 

community as a promising and advantageous alternative to limited analytical and semi-empirical 

modeling approaches. The primary goal of this research is to develop a computational 

microstructure modeling framework that will eventually allow researchers and practitioners of 

the pavement mechanics community to evaluate the effects of constituents and mix design 

characteristics (some of the key factors directly affecting the quality of the pavement structures) 

on the mechanical responses of asphalt mixtures. To that end, the mixtures are modeled as 

heterogeneous materials with inelastic mechanical behavior. To account for the complex 

geometric characteristics of the heterogeneous mixtures, an image treatment process is used to 

generate finite element meshes that closely reproduce the geometric characteristics of aggregate 

particles (size, shape, and volume fraction) that are distributed within a fine aggregate asphaltic 

matrix (FAM). These two mixture components, i.e., aggregate particles and FAM, are modeled, 

respectively, as isotropic linear elastic and isotropic linear viscoelastic materials and the material 

properties required as inputs for the computational model are obtained from simple and 

expedited laboratory tests. 

In addition to the consideration of the complex geometric characteristics and inelastic 

behavior of the mixtures, this study uses the cohesive zone model to simulate fracture as a 
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gradual and rate-dependent phenomenon in which the initiation and propagation of discrete 

cracks take place in different locations of the mixture microstructure. Rate-dependent cohesive 

zone fracture properties are obtained using a procedure that combines laboratory tests of semi-

circular bending specimens of the FAM and their numerical simulations. To address the rate-

dependent fracture characteristics of the FAM phase, a rate-dependent cohesive zone model is 

developed and incorporated into the mainframe of ABAQUS in the form of a customized user 

element (UEL) subroutine. The applicability of the rate-dependent microstructure fracture model 

is demonstrated and a parametric analysis is performed to evaluate the effects of different 

mixture parameters on the mechanical behavior of virtually generated hot-mix asphalt (HMA) 

microstructures. The results presented in this research demonstrate that computational 

microstructure models, such as the one developed in this study, have a great potential to become 

efficient design tools for asphalt mixtures and pavement structures.  
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Chapter 1 

Introduction 

Asphalt concrete mixtures are particulate composite materials comprising randomly-oriented and 

distributed aggregates, asphalt binder, mineral fillers, air voids, and additives. They are 

commonly used materials in the construction of roadways, airports, and parking lots with the 

main objective to sustain the loads applied by moving or stationary vehicles.  

As for any other composite, the characteristics of each individual constituent of the 

asphalt mixtures directly affect the overall behavior of the mixtures. This is actually the main 

benefit offered by engineered composite materials, i.e., they can be better designed via the 

optimization of the properties of each constituent. In the case of asphalt materials, two main 

components play a major role in the definition of the characteristics of the composite - the 

mineral aggregate particles and the cementitious phase of asphalt cement, fine aggregates, and 

air voids.  

The unique and complex characteristics of the cementitious asphaltic phase appear to be 

of major importance because they introduce a rate and temperature dependence to the 

mechanical properties of the whole composite. Thus, the accurate determination of material 

properties of the cementitious phase is necessary for the proper characterization of the 

mechanical responses of asphalt concrete mixtures subjected to different loading and 

environmental conditions. On the other hand, the skeleton of mineral aggregates also greatly 

influences the properties of the asphaltic composite because of its high volume fraction in the 

mixtures as well as its elevated stiffness properties. 
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Several standards have been proposed to obtain material properties of asphalt mixtures 

from laboratory testing. However, the determination of such properties in a representative and 

wide range of temperature and loading conditions may become an expensive and time-

consuming process that involves the fabrication and testing of multiple replicates in laboratory 

for days and sometimes weeks. To reduce costs and the time required to obtain material 

properties of asphalt mixtures, several predictive approaches have been proposed and shown 

different levels of success. Semi-empirical and analytical models generally present a certain 

agreement with experimentally-obtained properties, but the complex characteristics of the 

mixtures greatly limit the predictive efficiency of such methodologies. 

 To overcome the generic limitations of analytical and semi-empirical approaches, 

computational microstructure modeling based on well-established numerical methods (e.g., finite 

and discrete element methods) has been actively pursued as a promising alternative. Among the 

main advantages of the computational microstructure models over other predictive 

methodologies, one can mention that the computational approach uses microstructural 

characterization to account for numerous damage modes separately by considering individual 

mixture constituents and mixture heterogeneity.  Moreover, this approach does not require a 

large number of expensive and time-consuming laboratory experiments because it typically relies 

on numerical techniques and merely requires individual mixture constituent properties as model 

inputs. 

Among many challenges that still limit the predictive capabilities of computational 

models, the understanding of the cracking phenomenon is probably one of the most cumbersome 

to overcome. This is because of several factors, such as: the heterogeneity and the inelastic 

constitutive responses of the mixtures; the relatively large deformations in the fracture process 
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zone of the mixtures; the rate-dependent characteristics of that fracture process zone; the 

difficulties associated with the proper characterization of rate-dependent fracture properties and 

with the development of fracture models that consider the rate-dependence of those properties, 

among others.  

The primary goal of this research is to develop a computational microstructure modeling 

framework that will eventually allow researchers and practitioners of the pavement mechanics 

community to evaluate the effects of constituents and mix design properties (some of the key 

factors directly affecting the quality of the pavement structures) on the mechanical responses of 

asphalt mixtures. To that end, the complex microstuctural characteristics of the mixtures are 

reproduced in the model, which allows model users to easily evaluate effects of individual 

constituent properties and volumetric characteristics of the mixtures. Additionally, the model 

accounts for the rate-dependence of the fracture process zone of the mixtures via the 

development of a rate-dependent cohesive zone fracture model. 

The results shown throughout the dissertation demonstrate that computational 

microstructure models, such as the one presented herein, can become efficient design and 

analysis tools for the prediction of damage-dependent behavior of asphaltic composites when 

geometric characteristics of mixture microstructure and properties of individual mixture 

constituents are known and properly considered. 

1.1 Research Objective 

The objective of this research is to develop a computational microstructure modeling framework 

to predict mechanical properties and performance of heterogeneous and inelastic asphalt 
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mixtures that exhibit rate-dependent fracture characteristics at intermediate temperature 

conditions.  

Specific objectives of this research are: 

 To propose simple experimental testing protocols for the characterization of fracture 

properties of asphalt mixtures; 

 To develop a computational microstructure model for predicting: 

o Undamaged properties of heterogeneous and inelastic HMA mixtures; 

o Fracture-related damage behavior of heterogeneous and inelastic HMA mixtures; 

 To improve the accuracy of the model through the incorporation of customized user-

subroutines into the mainframe of the commercial finite element (FE) code used in the 

research (ABAQUS).  

1.2 Dissertation Layout 

Following this introductory chapter, Chapter 2 presents a comprehensive literature review on 

several approaches attempting to characterize the mechanical behavior of asphalt mixtures, as 

well as advantages, limitations, and shortcomings of these approaches. Experimental testing 

protocols available in the literature to characterize fracture properties of asphalt mixtures are also 

reviewed. In Chapter 3, a description of the initial boundary value problem (IBVP) for a general 

elastic-viscoelastic composite containing cracks is presented. Then, a short discussion on the 

formulation of the intrinsic bilinear cohesive zone model chosen for the fracture simulations in 

this study is also provided. Chapter 4 first describes the incorporation of a rate-independent CZ 

model into an ABAQUS user-element (UEL) subroutine. Then, to account for the rate-
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dependence of the fracture process zones of the mixtures, a rate-dependent cohesive zone 

fracture model is presented. Chapter 5 describes the experimental testing program designed in 

this research to obtain material properties of the different mixture phases. It also shows 

experimental testing results of dynamic modulus of asphalt mixtures that are used in a later 

chapter (Chapter 7) for the validation of the computational microstructure model. Chapter 6 

presents numerical simulations performed to determine cohesive zone fracture parameters for a 

wide range of applied loading rates. Extra simulations are also performed to calibrate the rate-

dependent functions for cohesive strength and fracture energy. In Chapter 7, simulations of tests 

with HMA mixtures are conducted to demonstrate the ability of the computational microstructure 

model to predict the dynamic modulus and simulate the fracture behavior of the mixtures and to 

account for the effects of important variables on the mechanical behavior of the mixtures. 

Chapter 8 presents the conclusions of the research and recommendations for future work 

required to improve the model predictions.  
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Chapter 2 

Background 

The proper understanding of the responses of pavement structures to load and environmental 

conditions is a fundamental step towards the construction of more comfortable and durable 

highways, which will eventually lead to savings of the taxpayers’ money reserved for the 

roadway networks around the globe. This understanding is generally facilitated by the 

development of simple and efficient testing protocols that can reproduce the behavior of the 

pavement structures in the laboratory. Nowadays, the pavement community is equipped with 

modern equipment and devices and has the ability to perform tests with a multitude of loading 

and temperature conditions. Using such powerful equipment, a lot of effort has been devoted for 

the development of testing procedures and protocols that can provide researchers and 

practitioners with reliable material properties and that are able to reproduce the damage 

responses of the pavement structures to applied loads and environmental effects.  

Based on properties of individual mixture constituents and volumetric characteristics 

(mix design) of asphalt mixtures using laboratory-fabricated specimens, several empirically 

based models have been developed and used in the last decades. A classical example of such 

models is the predictive model that has been developed by Witczak and his colleagues to 

estimate the dynamic modulus of asphalt mixtures from mix design inputs and component 

properties. The first version of Witczak’s predictive equation (Andrei et al., 1999) that was used 

in the first development of the Mechanistic-Empirical Pavement Design Guide (MEPDG) 

considered mixture volumetric properties and gradation, binder viscosity, and loading frequency 
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as input variables to predict the stiffness of asphalt concrete mixtures. Multivariate regression 

analysis of 2,750 experimental data was used to construct the 1999 version of the predictive |E*| 

expression. In 2006, Bari and Witczak revised the 1999 version, using 7,400 |E*| values (2,750 

from the original version and 4,650 new data points) from 346 mixtures. Another improvement 

was the use of the dynamic shear modulus and the phase angle of binders as inputs to the model. 

The 1999 equation used viscosity and loading frequency to characterize the mechanical behavior 

of the binder phase. The 2006 version of Witczak’s predictive equation (Bari and Witczak, 2006) 

is shown in Equation 1.  
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where  |E
*
|, |Gb

*
|, 200, 4, 38, 34, Va, Vbeff, and b = dynamic modulus of mixture (psi), dynamic 

modulus of binder (psi), aggregates  passing through No. 200 sieve (%), cumulative aggregates  

retained on no. 4 sieve (%), cumulative aggregates retained on the 3/8” sieve (%), cumulative 

aggregates retained on the 3/4” sieve (%), air voids (by volume of the mix) (%), effective binder 

content (by volume of the mix) (%), and phase angle of binder (degree). 

Clearly, the 2006 version of Witczak’s predictive equation represents a better prediction 

than the 1999 version due to more data involved, although it has been reported in the literature 
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that the model exhibits increased error magnitudes at extremely high- and low-temperature 

conditions (Bari and Witczak, 2006; Ceylan et al., 2009).  

Christensen et al. (2003) proposed another semi-empirical has been used by many 

researchers and practitioners. The model is based on the rule of mixtures which results in a 

simple predictive expression that includes: volumetric parameters such as voids in the mineral 

aggregate (VMA) and voids filled with asphalt (VFA), the stiffness of binder (|Gb*|), and the 

aggregate contact volume (Pc). The authors compared this simplified version of the model with 

another version that accounted for the stiffening effects of mastic. They concluded that the 

simplified equation (which treated the asphalt concrete mixtures as a simple three-phase system 

consisting of aggregate, asphalt binder, and air voids) is accurate in many applications. The final 

expression for the simplified version of the model is shown in Equations 2 and 3. 
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where Pc, VMA, and VFA = aggregate contact volume, voids in mineral aggregates (%), and 

voids filled with asphalt (%).  
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Empirical methodologies basically intend to predict the behavior of the heterogeneous 

structures based on the statistical analysis of databases containing large amounts of data 

accumulated from expensive and time-consuming experiments. In many cases, the databases are 

created based on regional materials and weather conditions and this limits the predictive power 

of such predictive methodologies. 

 In the attempt to formulate more universal relations between the variables (i.e., 

individual constituent properties and volumetric/geometric characteristics) and the overall 

responses of heterogeneous composites to external loads, analytical micromechanics 

formulations have also been proposed in the open literature. Micromechanics is a theoretical 

method used to determine the effective properties of mixtures from known properties and phase 

geometry of the constituents of the mixtures. Constitutive response at the macro-scale level of 

the mixtures can be calculated in terms of small-scale parameters (e.g., the shape and volume 

fraction of heterogeneities) and their own constitutive properties. Starting with the fundamental 

work of Einstein (Einstein, 1906), many different micromechanical analyses have been 

developed to understand the behavior of heterogeneous mixtures. Among numerous analytical 

micromechanics models, Hashin (1962) proposed an approximate model for isotropic 

heterogeneous media containing spherically shaped particles based on the variational theorems 

of linear elasticity.  

Effective elastic material properties can be directly converted to viscoelastic properties 

using the correspondence principle on the basis of the Laplace transform. Therefore, the elastic 

solution can be reinterpreted as a viscoelastic solution in the transformed domain by replacing 

the elastic material properties by the Carson transformed properties. Corresponding time-

dependent viscoelastic properties, such as relaxation modulus can be determined by inverse 
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Laplace transformation simply by using Schapery’s direct method (Schapery, 1962). By 

assuming that the shear modulus of the rigid aggregates and Poisson’s ratios of each phase are 

constants (i.e., not a function of time), the linear viscoelastic shear relaxation modulus of asphalt 

concrete mixtures can be expressed by using Hashin’s analytical micromechanics model as 

follows: 
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where   G(t), )(
~

sGm , Gp, m, Vp, and s = shear relaxation modulus of asphalt concrete mixture (in 

time domain), Carson-transformed shear modulus of matrix phase, elastic shear modulus of 

aggregate particles, Poisson’s ratio of matrix phase, volume fraction of aggregate particles, and 

Laplace variable. 

Using Equation 4, the shear relaxation modulus can be plotted as a function of time. Data 

plots between relaxation modulus and time require a curve-fitting function to be used in the 

calculation of the linear viscoelastic response in a constitutive equation. Among many curve-

fitting functions, the Prony series based on the generalized Maxwell model fits the data more 

mathematically efficiently than the other functions. The Prony series expression of the relaxation 

modulus is given as:  
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where  G∞, Gi, i, and n = long-time equilibrium modulus, spring constants in the generalized 

Maxwell model, relaxation time, and number of Maxwell units in the generalized Maxwell 

model.  

The parameters from the Prony series representation shown in Equation 5 are used to 

calculate the storage and loss moduli (Equations 6 and 7), which are used to obtain the 

corresponding dynamic shear modulus as a function of loading frequency (Equation 8).  
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where |G
*
()|, G

*
(), G

’
(), G

”
(), and= dynamic shear modulus, complex shear modulus, 

storage shear modulus, loss shear modulus, and angular frequency. 

Assuming that Poisson’s ratio of asphalt concrete mixtures is a constant, dynamic 

modulus based on Hashin’s analytical micromechanics approach can be finally expressed as 

follows:  

 

   1)(2)( ** GE                  (9) 

 

where   |E
*
()| and= dynamic modulus of mixture and Poisson’s ratio of mixture. 

  

Kim and Little (2004) found that Hashin’s model can accurately predict the stiffening 

effect of fillers in the asphalt mastic when the volume fraction of fillers in the mastic is low. 
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However, model predictions diverged from the testing data at high-volume fractions. This 

indicates the presence of significant particle interactions and potential physico-chemical 

reinforcement between binder and filler. Irregular particle shape and rough texture might be 

other variables that introduce variance between model predictions and test data, because 

Hashin’s model was developed for composites containing perfectly spherical particles without 

particle-matrix interaction.  

The analytical models represent a huge scientific advancement of the 20th century in the 

prediction of the behavior of composite materials. However, the complicated characteristics of 

highly heterogeneous particulate composites such as asphalt mixtures limit the predictive 

capabilities of these analytical models because their derivation is often accompanied by several 

inevitable geometrical assumptions.  

Computational models based on well-known numerical methods (e.g., finite element and 

discrete element methods - FEM and DEM, respectively) have been actively pursued by the 

pavement mechanics community as an alternative to empirical and analytical formulations. To 

better understand the effects of individual mixture components and their interactions on asphalt 

mixtures, many researchers (Buttlar and You, 2001; Masad et al., 2002; Papagiannakis et al., 

2002; Sadd et al., 2003; Soares et al., 2003; You and Buttlar, 2004, 2005, 2006; Abbas et al., 

2005; Dai et al., 2005; Kim and Buttlar, 2005; Dai and You, 2007; Aragão et al., 2009a, 2009b, 

2010; You et al., 2009; Aragão and Kim, 2010; Kim et al., 2010) have recently attempted 

microstructure-based computational approaches.  

The computational microstructure modeling also appears to be more attractive than the 

continuum damage mechanics approach because the latter considers the damaged body as a 

homogeneous continuum on a scale that is much larger than that of the size of the cracks. The 
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heterogeneity of the asphalt samples is not considered and damage in the samples is typically 

represented by phenomenological internal state variables (ISVs). ISVs are determined by 

matching damage evolution characteristics from laboratory testing results through regression 

analyses. On the other hand, the computational microstructure approach accounts for the 

different properties of various mixture constituents, the heterogeneity of the mixtures, and the 

appropriate damage evolution characteristics to describe the fracture process in a more realistic 

scale.   

Among the main features that should be included in the microstructure-based approaches, 

the most important are probably the consideration of: mixture heterogeneity, spatial distribution 

of particles, contact among ingredients, air voids within the mixtures, and three-dimensional 

geometric characteristics of the samples. It is also very important to obtain the undamaged and 

damage-related material properties of the different mixture constituents with reliable and 

preferably fast laboratory testing procedures. 

To account for the mixture heterogeneity, researchers have proposed digital image 

techniques that accurately reproduce the inner microstructure, i.e., spatial distribution of 

aggregates within a fine aggregate asphalt matrix (FAM) phase (fine aggregates + asphalt mastic 

+ entrained air voids) of the asphalt mixture specimens. One example of such techniques has 

been heavily pursued by Masad et al. (1999a, 1999b) is illustrated in Figure 1. Several 

researchers, e.g., Papagiannakis et al. (2002); Aragão et al. (2009a, 2009b, 2010), have used the 

two-dimensional digital image techniques (presented in Figure 1) similar to the method proposed 

by Masad and his colleagues. Another approach that has recently been attempted by several 

researchers is the use of three-dimensional X-ray computed tomography (CT) image technique 

(see Figure 2), as presented in several studies (Wang et al., 2001; Tashman et al., 2004; Masad et 
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al., 2005; You et al., 2009). 

 

Figure 1. Digital image technique to generate 2-D microstructure of asphalt mixtures.  

 

Figure 2. Three-dimensional CT image analysis technique (Masad et al., 2005 and You et al., 

2009). 

Another important ingredient that has been considered by researchers is the component-

to-component contact. Many studies by You and his colleagues (You and Buttlar, 2004 and 

2005; Dai and You, 2007) and others (Papagiannakis et al., 2002; Abbas et al., 2005) included 

the contact mechanisms in the prediction of stiffness characteristics of asphalt materials. As 

illustrated in Figure 3, two spherical particles are in contact through a thin film of softer material, 
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which was assumed to be elastic and to transfer normal and shear stresses in linear fashion 

through two elastic springs. It was observed that the contact stiffness decreases with the 

increasing film thickness. Abbas et al. (2005) proposed a simple linear contact model to be 

activated whenever the distance between the centroids of two adjacent particles becomes less 

than or equal to the sum of their radii. The idea of damage is also introduced with the use of two 

material strength parameters (You and Buttlar, 2004). When stress levels at a contact exceed the 

bond strength, that bond breaks and separation occurs. You and Buttlar (2004) also defined a 

friction force between the contacting bodies. 

 

 

Figure 3. Contact model: (a) Two bonded particles; (b) Linear contact model; and (c) Normal 

and shear bond strength (You and Buttlar, 2004 and Dai and You, 2007). 

In addition to the geometric complexities and materials contact, one of the most 

significant challenges that the computational microstructure modeling has faced so far is the 

proper characterization of damage such as cracking. Modeling the initiation and coalescence of 

micro-cracks into macro-cracks and the propagation of those macro-cracks is a very complicated 

task. The level of difficulty significantly increases if the model includes challenges, such as rate-

dependent inelastic behavior and interactions among the constituents in the mixtures. 

Recognizing the importance of these factors for better predictions, researchers have been 

adopting the microstructural approach (Guddati et al. 2002; Soares et al. 2003; Paulino et al. 
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2004; Dai et al. 2005, 2006; Kim et al. 2005, 2006a, 2007; Song et al. 2006a, 2006b) to model 

the discrete cracking phenomenon in asphalt concrete mixtures.  

One option to model cracking within the microstructure of asphalt mixtures is through the 

use of the cohesive zone (CZ) modeling concept. CZ modeling is a well-established way to 

model crack development in monolithic and composite materials, not only because it removes 

the stress singularity at the crack tip but also because it provides a powerful and efficient tool 

which can be implemented in various computational methods, such as FEM and DEM. 

Moreover, the CZ approach can model cracks along bi-material interfaces (such as aggregate-

binder interfaces) which are often considered weak zones susceptible to cracking.  

As shown in Figure 4, CZ models regard fracture as a gradual phenomenon in which 

separation (    in Figure 4) takes place across an extended crack tip, or cohesive zone (fracture 

process zone) and where fracture is resisted by cohesive tractions (    in Figure 4) that vary 

from      (cohesive strength) to 0, when a critical displacement,   , is reached and the faces of 

the cohesive element are fully separated. CZ elements are placed between continuum elements 

(in either homogeneous or heterogeneous objects) to represent progressive separation of a 

material. The CZ effectively describes the material resistance when material elements are being 

displaced. Since the crack path follows specified CZ elements, the direction of crack 

propagation depends on the presence of cohesive zones, implying that the crack path is mesh-

dependent. However, refining the mesh could resolve this problem. 
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Figure 4. Illustration of cohesive zone concept for mode I fracture. 

Equations relating normal and tangential displacement jumps across the cohesive 

surfaces with the proper tractions define a CZ model. An examination of the open literature 

reveals the existence of numerous CZ models (Dugdale, 1960; Barenblatt, 1959, 1962; 

Needleman, 1987, 1990a, 1990b; Rice and Wang, 1989; Tvergaard, 1990; Tvergaard and 

Hutchinson, 1992; Allen et al., 1994; Camacho and Ortiz, 1996; Geubelle and Baylor, 1998; 

Ortiz and Pandolfi, 1999; Yoon and Allen, 1999; Allen and Searcy, 2001; Espinosa and 

Zavattieri, 2003; Park et al., 2010). 

The different CZMs proposed in the literature can be distinguished by two main 

characteristics: (1) the shape of the traction-separation curve and (2) the existence of an initial 

cohesive stiffness. The influence of the shape of the traction-separation laws on the overall 

responses of bodies subjected to damage has been assumed to have no significant effect 

(Rahulkumar et al., 2000; Hutchinson and Evans, 2000; Mohammed and Liechti, 2000). 

However, more careful analyses revealed that cohesive strength and work of separation should 

not be considered as the only two important parameters defining the CZ model. The shape of the 



www.manaraa.com

18 

 

traction-separation curve directly affects the numerical simulation of the fracture process 

(Chandra et al., 2002; Volokh, 2004; Song et al., 2008). 

The second distinctive characteristic is the existence of an artificial initial stiffness in 

the cohesive zone model. Models where the artificial initial stiffness is considered are called 

intrinsic models, whereas models assuming initial rigidity for the cohesive zones are called 

extrinsic models. In the intrinsic models, the traction-separation relation is such that with 

increasing separation, the traction across the cohesive zone reaches a maximum, then decreases 

and eventually vanishes, indicating a complete decohesion (separation). The material constants 

are cohesive zone parameters, which characterize the fracture behavior of the material. In 

general, cohesive zone models are described by three parameters: work of separation, cohesive 

strength, and critical displacement. In contrast, the extrinsic cohesive zone model does not 

display the initial ascending trend in the traction-separation curve. It is assumed that separation 

occurs when cohesive zone traction reaches the cohesive strength of the material, and once the 

separation occurs, the cohesive zone traction decreases as separation continues. 

Intrinsic formulations are easier to implement, but may become very computationally 

expensive because many cohesive elements need to be inserted a priori within the FE meshes. 

Thus, the possible cracked configurations of the bodies are limited by the topology of the FE 

discretization. The crack path is constrained by the inter-element boundaries. This mesh-

dependence has been reported by several researchers (Miller et al., 1999; Xu and Needleman, 

1994; Scheider and Brocks, 2003). This problem can evidently be contoured by the generation of 

very highly refined meshes. Several researchers have also reported problems associated with the 

artificial compliance in the response of the bodies of interest to externally applied loads due to 

the assumption of the initial artificial stiffness in the traction-separation relations of intrinsic CZ 
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models. This phenomenon is related to the assumption made in intrinsic CZ models where 

discontinuities in the displacement fields happen in the uncracked body. As a result, an artificial 

compliance rises at the inter-element boundaries and the corresponding stiffness of that 

imaginary spring introduced between bulk elements depends on the initial stiffness of the 

intrinsic CZ model. This problem may be effectively controlled if a cohesive zone law with 

linear pre-peak traction-separation relation is used (Geubelle and Baylor, 1998; Espinosa et al., 

2000; Zavattieri and Espinosa, 2001; Espinosa and Zavattieri, 2003; Song et al., 2006a; Shukla 

et al., 2009). This is done by assuming very high values of the initial stiffness in the model 

(Alfano and Crisfield, 2001; Klein et al., 2001). However, the use of “too stiff” initial cohesive 

stiffness can generate problems with stability and restrict severely the simulation time steps. 

Espinosa and Zavattieri (2003) suggested a scheme in which two time steps, the standard time 

step related to the properties of the bulk material and the second time step named by the authors 

as the cohesive time step, are calculated and the smallest between the two is taken as the overall 

time step. 

Contrary to the intrinsic cases, extrinsic models are more realistic because they do not 

assume the pre-existence of cohesive zones within the FE meshes. This characteristic is generally 

referred to as “initial rigidity”. Cohesive elements are inserted as needed by node duplication 

(process generally referred to as dynamic or adaptive insertion) in the mesh whenever a damage 

initiation criterion is reached. This initial rigid response makes adjacent continuum elements 

remain concurrent before the initiation of the fracture process, eliminating the problem of 

artificial compliance prior to fracture. The node duplication process is followed by the gradual 

reduction in the load bearing capacity of the cohesive element and by the eventual complete 

failure of that element after the characteristic interfacial separation is reached. However, this 
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automatic insertion scheme needs extra implementation efforts because it requires the continuous 

update of the node numbering within the mesh as edges of continuum elements are duplicated to 

simulate the propagation of cracks. This topic has been recently investigated by several 

researchers (Pandolfi and Ortiz, 1998 and 2002; Mota et al., 2008). Challenges associated with 

the use of extrinsic CZ models include the difficulties related to the continuous update of the 

node numbering as cohesive elements are inserted in the meshes and mesh dependency (Ruiz et 

al., 2001; Zhou and Molinari, 2004; Papoulia et al., 2003).  

Table 1 (Shet and Chandra, 2002) summarizes some of the popular cohesive zone models 

developed by researchers with specific purposes regarding the shape of the cohesive zone 

traction-separation curve and the model parameters involved. Representative problems attempted 

and solved by using each cohesive zone model are also presented in the table. As shown in the 

table, the work of separation, cohesive strength, and the critical displacement are typically key 

parameters that can be obtained from fracture tests. The cohesive zone model has been used in 

various applications and materials (ductile to quasi-brittle), because it can provide an ideal 

framework to model strength, stiffness, and failure in an integrated manner. 
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Table 1. Various cohesive zone models and their parameters (Shet and Chandra, 2002). 
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The cohesive zone modeling approach has received increasing attention from the asphalt 

mechanics community. This is because it is useful and powerful for modeling both brittle and 

ductile failure, which are frequently observed in asphalt mixtures due to the wide range of 

service temperatures and loading rates to which it is subjected.  

The cohesive zone modeling approach in asphalt materials and flexible pavements was 

first employed by Jeng and his colleagues (Jeng and Perng, 1991; Jeng et al., 1993) to model 

crack resistance and propagation in asphalt pavement overlays. Recently, the cohesive zone 

modeling concept has been actively implemented in the modeling of asphalt concrete, 

particularly to simulate fracture with the consideration of the bulk material inelasticity. It has 

been well known that the asphaltic materials are rate-dependent and temperature sensitive due to 
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the asphalt binder phase in the mixture. Thus, the assumption of linear elasticity for the bulk 

material is not appropriate to produce accurate results. Examples of research efforts considering 

the inelasticity of the bulk material in asphalt mixtures are presented in various studies including 

Souza et al. (2004), Kim et al. (2005, 2006, 2007); Song et al. (2006a, 2008); Aragão et al. 

(2009b); Kim and Buttlar (2009); Aragão and Kim (2010); and Kim et al. (2010).  

Another important aspect of the current computational models based on the cohesive 

zone concept is the experimental procedures to characterize the cohesive zone fracture 

properties. The most common geometry used for the fracture testing of asphalt concrete has 

probably been the single-edge notched beam specimen (SE(B)) (Mobasher et al., 1997; 

Marasteanu et al., 2002). To obtain cohesive fracture energy, Wagoner et al. (2005a) proposed a 

testing protocol that used the SE(B) geometry. Song et al. (2006b) and Kim et al. (2009) used the 

methodology proposed by Wagoner et al. (2005a) to calibrate cohesive fracture parameters used 

in their microstructural FEM and DEM simulations, respectively. The main problems with the 

use of SE(B) geometry to routinely obtain fracture properties of asphalt mixtures are that the 

fabrication of specimens in the laboratory becomes impractical and that it is not often viable to 

extract beam specimens from mixtures in the field. 

With the limitations of the SE(B) geometry, Wagoner et al. (2005b, 2005c) proposed a 

testing protocol using a disk-shaped compact tension test (DC(T)), which is similar to the DC(T) 

geometry proposed in ASTM E399 (2008) but with a longer pre-crack to avoid premature 

fracture at the loading holes (see Figure 5). Researchers at the University of Illinois at Urbana- 

Champaign (UIUC) have combined the fracture energy from the DC(T) tests conducted as 

proposed by Wagoner et al. (2005b and 2005c) (especially at low temperatures) with the strength 
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of the asphalt mixtures obtained from indirect tension (IDT) specimens (AASHTO T322-03) to 

perform their fracture simulations (Song et al., 2006a). 

 

Figure 5. Crack growth in the initial and modified DC(T) specimen geometry (Wagoner et al., 

2005b). 

The researchers at the University of Nebraska - Lincoln (UNL) have also been involved 

in the experimental characterization of cohesive zone fracture properties of asphalt materials. 

Two different specimen geometries have been attempted by the researchers: an in-house 

developed small-scale tensile fracture test geometry (Freitas, 2007; Freitas et al., 2007, Aragão et 

al., 2011) and the semi-circular bend (SCB) geometry as presented in Figure 6. Aragão et al. 

(2009b) has used the small-scale tensile fracture testing methodology to obtain cohesive fracture 

properties of FAM samples. Even if promising results were found from the study by Aragão et 

al. (2009b), the researchers at the University of Nebraska have further attempted to develop a 

simpler testing protocol that uses equipment and devices available to many researchers and 

department of transportation (DOT) engineers. The new geometry considered was the SCB. The 

semi-circular bend specimen has been used by many researchers (Basham et al., 1990; Khalid 

and Artamendi, 2008; Mohammad and Kabir, 2008; van Rooijen and de Bondt, 2008, Li and 

Marasteanu, 2004 and 2010, and many more) to obtain fracture toughness, fracture energy, and 

stress-softening curves of various types of brittle and semi-brittle materials. SCB testing is more 
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advantageous than other types of fracture tests, due to its relatively simple testing configuration, 

more economical aspects in specimen fabrication (two testing specimens are produced from one 

cylinder sample which can easily be obtained from a Superpave gyratory compactor and field 

cores), and its repeatable testing results. The testing set-up currently used by the UNL 

researchers is shown in Figure 6b. 

Using the testing set-up shown in Figure 6b, the present research combines experimental 

tests and computational modeling to characterize the rate-dependent distribution of cohesive 

fracture properties (i.e., cohesive strength and fracture energy) as a function of separation rates. 

As also shown in Figure 6b, high speed cameras of a digital image correlation (DIC) system are 

used to monitor the local fracture behaviors at the initial notch tip of the SCB specimens. DIC is 

an easy-to-use, non-contact technique that makes use of high-resolution video cameras to capture 

time-varying deformations of a specimen. Using image analyses, it compares full-field 

deformation, including crack tip behavior at a certain loading time, with the initial configuration. 

The combination of experimental testing with numerical simulations of simple tests such 

as the SCB test may provide more realistic results of cohesive fracture properties than traditional 

approaches because those traditional approaches generally rely on globally averaged material 

deformations or displacements (e.g., crack-mouth opening displacements - CMOD) obtained far 

from the actual fracture process zone to estimate the local fracture energy (i.e., at the fracture 

process zone) of the testing specimens. That fracture energy is generally obtained by calculating 

an area under the load-CMOD curve that is normalized by the area of the fractured surface, i.e., 

initial ligament length multiplied by the specimen thickness. This approach may lead to an 

overestimation of the true fracture energy of the materials because several sources of energy 

dissipation such as material viscoelasticity are involved in the energy calculations. Additionally, 
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these traditional testing protocols also require supplementary experimental testing (e.g., IDT 

tests) for the characterization of the cohesive strength of the mixtures. The approach proposed in 

this dissertation only requires one type of experimental testing to characterize both cohesive 

fracture properties locally at the fracture process zone of the cracked specimens. 

 

 (a) 

   

 (b) 

Figure 6. (a) Small-scale Tensile Fracture Testing; and (b) SCB testing to obtain CZ fracture 

properties of FAM specimens. 

Another very important feature that has been neglected in the current computational 

microstructure models available in the literature is the rate-dependent fracture behavior of 

asphalt mixtures. It is a common sense in the pavement mechanics community that asphalt 



www.manaraa.com

27 

 

mixtures present a global mechanical behavior that is a function of local rates of deformation 

within the mixture microstructure. That rate-dependence is related to several factors such as the 

viscoelasticity of the bulk matrix and the fracture characteristics throughout the fracture process 

zone (Souza et al., 2004; Kim et al., 2007). Thus, the mere consideration of the rate-dependence 

associated to the viscoelastic behavior of the bulk material is not enough to fully model the rate-

dependent responses of the mixtures when those are subjected to damaging loads. Models that 

account for the local rate-dependent fracture behavior at the fracture process zone (e.g., Yoon 

and Allen, 1999; Rahulkumar et al., 2000; Allen and Searcy, 2001) of asphalt mixtures must be 

sought and implemented. 
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Chapter 3 

Model Formulation 

In this chapter, an introduction to the initial boundary value problem (IBVP) for a general 

elastic-viscoelastic composite containing cracks is first presented. Then, a short discussion on the 

formulation of the intrinsic bilinear cohesive zone model chosen for the fracture simulations in 

this study is provided.  

3.1. IBVP Formulation 

Figure 7 shows a general body containing discrete cracks with cohesive zones. The body has an 

interior volume V  and a boundary V that is composed of two parts: eV  (external boundary) 

and cV  (internal boundary normally with cohesive zones). The state variables to be predicted by 

the model are the displacement vector ),( txu mi , the stress tensor ),( txmij , and the strain tensor 

),( txmij , where mx  are the spatial coordinates and t  is time. In the absence of body forces and 

inertial effects, the conservation of linear momentum can be expressed by: 

0, jji  in volume V                          (10) 
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Figure 7. Schematic representation of the cohesive zone concept for a pure mode I fracture. 

By neglecting body moments, the conservation of angular momentum implies that the 

stress tensor must be symmetric. The linearized form of the strain-displacement relationship for 

small strains is given by: 

)(
2

1
,, ijjiij uu   in volume V              (11) 

The linear elastic constitutive relationship can be expressed as: 

),(),( txCtx mkl

E

ijklmij    in volume V             (12) 

where E

ijklC  = elastic modulus tensor, which is not time-dependent. 

If the material is linear viscoelastic, the constitutive equation may be represented by a 

convolution integral of the form: 
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 




t

mkl
ijklmij d

x
tCtx

0

),(
)(),( 




  in volume V            (13) 

where ijklC , t , and = stress relaxation modulus tensor (which is time-dependent), time of 

interest, and integration variable.  

The linear viscoelastic relaxation modulus is determined by performing laboratory 

constitutive tests, such as static creep/relaxation tests or dynamic frequency sweep tests, where 

testing is performed within the limits of linear viscoelasticity. Testing results can be represented 

by a mathematical form such as a Prony series based on the generalized Maxwell model. The 

linear viscoelastic stress relaxation modulus can be expressed as: 

   
 
 


 















M

p pijkl

pijkl

pijklijklijkl t
C

CCtC
1 ,

,

,,
exp)(


           (14) 

where  
,ijklC and  

pijklC
,

, ijkl,p, and M = spring constants in the generalized Maxwell model, 

dashpot constants in the generalized Maxwell model, and the number of Maxwell units.  

At the crack tips the cohesive zones have constitutive behavior that reflects the change in 

the cohesive zone material properties due to microscopic damage accumulation ahead of crack 

tips. This behavior may be expressed by the relationship between the cohesive zone traction and 

separation displacement as follows: 

 ),(),( txTtxT miimi   on cV              (15) 
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where iT  and i = cohesive zone traction vector and cohesive zone displacement, and the symbol 

{ } is used to imply time- and history- dependence for damaged zones, since the cohesive zone 

internal boundary (i.e., crack) typically varies with time.  

The initial condition for all state variables are known and assumed to be zero, i.e.: 

0)0,( txmij  in the volume V and on the boundary V  

0)0,( txmij  in the volume V and on the boundary V           (16) 

0)0,( txu mi  in the volume V and on the boundary V  

In addition, either tractions or displacements are specified along sub-sets of the boundary 

of the body. These general mixed boundary conditions are: 

imi TtxT ˆ),(   on 1eV ,                   (17) 

imi utxu ˆ),(   on 2eV .               (18) 

where iT̂  and iû = known boundary tractions and known boundary displacements. 

With Equations 10 through 18, the above IBVP is well-posed. A solution to this problem 

generally exists and is obtainable analytically and/or numerically.  

3.2. Cohesive Zone Concept and Bilinear Cohesive Zone Model 

As previously mentioned, cohesive zone models define fracture process by relating cohesive 

zone tractions that resist to the separation displacements at the cohesive zone. The traction-

separation relation has been proposed by many researchers in different forms. This research uses 
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an intrinsic bilinear cohesive zone model (Geubelle and Baylor, 1998; Espinosa and Zavattieri, 

2003) as presented in Figure 8. The bilinear model has the ability to reduce the artificial 

compliance effect by providing an adjustable initial slope in the cohesive law. The model 

assumes that there is a recoverable linear elastic behavior until the traction reaches the peak 

value in the traction-separation curve.  

 

(a) in pure tension (mode I)                                (b) in pure shear (mode II)     

Figure 8. Bilinear cohesive zone model (normalized traction versus normalized separation). 

The non-dimensional effective displacement for a two-dimensional case can be given 

(Espinosa and Zavattieri, 2003) by: 

2

2

2










 










 


t

t

n

n

e





                (19)  

where the subscripts e, n, t represent effective, normal (opening), and tangential (shear sliding), 

respectively,    and     represent the displacement jumps across the cohesive zone, is the non-
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dimensional displacement, and is the parameter coupling normal and tangential energy release 

rates. 

 

As shown in Figure 8, cohesive zone traction in the bilinear model increases from zero to 

a peak value (i.e., cohesive strength,     ) in a linear elastic fashion then presents linear 

softening that accounts for progressive damage occurring in the fracture process zone. At the 

maximum traction, a parameter (cr) can be identified. The non-dimensional displacement cr is 

considered an important parameter in the bilinear model, since the parameter defines initiation of 

damage in the fracture process zone, and also controls the pre- and post-peak slopes of the 

model. Other important displacement quantities, the critical displacements, n and t, represent 

displacement jumps where complete separation occurs for pure mode I and pure mode II fracture 

problems, respectively, inferring zero traction.  

For the pre-peak region (e ≤ cr), the normal and tangential components of the traction 

vector are given by: 










 


n

n

cr

n

T
T


.max                (20) 








 


t

t

cr

t

T
T




.max                (21) 

where  = n/t) 

For the post-peak region (e > cr), the normal and tangential components of the traction 

can be expressed as follows: 
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ecr

e
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




..

1

1 max               (23) 

The cohesive zone fracture energy (i.e., work of separation) is calculated by integrating 

the cohesive zone traction with respect to the separation distance. The work of separation in pure 

normal displacement condition (mode I fracture - Gn) and in pure shear sliding condition (mode 

II fracture - Gt) can be expressed by Equation 24 and Equation 25, respectively. 

max

0
2

1
TdTG nnnn

n





                 (24) 

nt
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n

tttt GTTdTG
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


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



             (25) 

Equation 25 provides a physical meaning for the parameter 

Another bilinear traction-separation relation has been used by Song (2006a, 2006c). In 

that model, a critical displacement where complete separation happens, c, is defined. Assuming 

that n = t = c and that   = 1, Equation 20 to 23 can be rewritten as: 

 For e ≤ cr , 






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For e > cr ,  
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 Also assuming that  = 1, the cohesive zone fracture energy can be calculated by 

computing the area below the bilinear traction-separation curve with peak traction maxT and 

critical displacementc, as follows: 

max
2

1
TG cc 

                

(30) 

 The model proposed by Song (2006a, 2006c) has been used in the implementation of the 

rate-dependent cohesive zone model proposed in the next chapter. 
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Chapter 4 

Rate-Dependent CZ Model 

Modeling the fracture behavior of asphalt concrete mixtures is a complex subject due to factors 

such as heterogeneity, inelastic mechanical behavior, and rate-dependent fracture characteristics 

of the mixtures. The fracture behavior can be modeled with different approaches, and one that 

has become popular in the recent years is via the implementation of cohesive zone models, as 

previously illustrated. Several researchers have used the cohesive zone technique to model the 

fracture behavior of asphalt mixtures. However, most of the fracture models found in the 

literature have failed to address the rate-dependent fracture characteristics of the mixtures.  

To account for the rate-dependent fracture behavior of asphalt mixtures, a rate-dependent 

CZ fracture model is presented in this chapter and implemented as a user-element (UEL) 

subroutine that is incorporated into the mainframe of ABAQUS. Most of the FEM 

implementation scheme of the rate-independent CZ model proposed by Song (2006c) was used 

for the proposed rate-dependent model. However, the proposed model represents an 

improvement to the model proposed by Song (2006c) in the sense that it assigns individual sets 

of CZ fracture properties (i.e., cohesive strength and fracture energy) to each CZ element in the 

FEM mesh according to the rates of displacement differences across each CZ element. 
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4.1. FEM Implementation 

This section briefly describes the implementation of a rate-independent CZ model into the 

mainframe of ABAQUS in the form of a UEL subroutine. The finite element implementation of 

the contribution of the cohesive elements to the force vector, f, and tangent stiffness matrix, K, 

was proposed by Song (2006a) and is reviewed below. This work represents an extension of the 

UEL subroutine presented by Song (2006c) to incorporate the rate-dependent characteristics of 

the cohesive zone fracture properties, i.e., cohesive strength and fracture energy. More details 

about the FEM implementation of the rate-independent CZ model that served as basis for this 

work can be found in Song (2006c). 

 Equations 31 and 32 are used by Song (2006a) to define global nodal f and K for a four-

noded cohesive element (see Figure 9) in the isoparametric domain       . 

 

Figure 9. Four-node cohesive element (Song, 2006a). 

   ∫       
 

  
                  (31) 

   ∫            
 

  
               (32) 
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where  ,   , and   = traction vector, Jacobian between isoparametric and original coordinates, 

and tangent modulus matrix. Matrix   is defined as: 

                        (33) 

where R (directional cosines matrix) defines the orthogonal transformation from the global to the 

local elemental coordinate system, i.e., (X, Y) to (tangential (or t) and normal (or n) local 

directions for each cohesive element) in 2-D;   defines the matrix of shape functions and   is an 

operator matrix used to define the relative displacements           between top and bottom 

nodes of each cohesive element.  

 Matrix B is used to transform the global displacement vector, u, into the relative local 

displacement vector,          , as follows: 

{
  
  
}            u                

or                 (34) 
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where   and   
  = angle between global and local coordinate systems; and global displacement 

of node n (n=1 to 4) in global coordinate M (X or Y). Shape functions    and    are defined in 

the isoparametric domain as: 
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(   )                (35) 

    
 

 
(   )                (36) 

 The displacement jumps in the local coordinate system,          , are used in the 

computation of the traction vector,  , according to the traction-separation cohesive law adopted. 

To compute the tangent modulus matrix,  , one needs to differentiate   with respect to 

         . The components of the tangent modulus matrix are then given by: 

    
   

   
                 (37) 

where i, j = t or n. 

Gaussian quadrature is used to approximate the integral of the functions shown in 

Equations 31 and 32 at two specified Gaussian integration points, i.e., -0.5773502691896 and 

0.5773502691896 with the associated function weights equal to 1. 

4.2.  Rate-Dependent Cohesive Zone Model 

The rate-dependent CZ model uses the same implementation scheme reviewed in the section 

above. However, the proposed rate-dependent code assigns individual sets of cohesive strength 

and cohesive fracture energy to each cohesive element in the FE mesh based on the rate of 

displacement jumps between the two faces of the cohesive elements.  

 The rate-dependence of the fracture properties is defined via Equations 38 and 39. 

Equation 38 represents a simplification of the rate- and temperature-dependent expression for 

cohesive strength defined by Espinosa and Zavattieri (2003) because the consideration of thermal 
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effects on the fracture properties is out of the scope of this dissertation. A similar rate-dependent 

expression is assumed for the other CZ property, i.e., the cohesive fracture energy,   . 

         
   
 {        (

 ̇ 

 ̇ 
   )}              (38) 

     
   
 {        (

 ̇ 

 ̇ 
   )}              (39) 

where  ̇ 
   

,     
   

,   
   

, and    and    = reference displacement jump rate, cohesive strength at 

 ̇ 
   

, cohesive fracture energy at  ̇ 
   

, and model parameters determined with the aid of 

experimental test results (fracture tests with the SCB geometry in the research).    represents the 

evolving effective displacement jump in each cohesive element and is calculated as: 

    √  
    

 
                (40) 

 The effective displacement jump rate,  ̇   
   

  
, is individually calculated for each 

cohesive element for separation displacements within the region of recoverable linear elastic 

behavior of the cohesive traction-separation law. With the calculated  ̇ , the fracture properties 

shown in Equations 38 and 39 are computed and used to update the traction vector, t, and tangent 

modulus matrix, C. 

4.3. Model Verification 

In this section, numerical simulation results using the newly-developed rate-dependent cohesive 

zone model are compared to analytical solutions of a simple problem. To check if the 

implementation is made correctly, a uniaxial bar problem was simulated. The bar was assumed to 

be elastic and a four-node cohesive zone element was placed in the middle of the bar between 
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two elements of bulk material. Table 2 summarizes the applied loads, geometry, and material 

properties of the uniaxial bar problems simulated for the verification of the rate-dependent 

fracture model. 

Table 2. Applied loads, geometry, and material properties of the uniaxial bar problem used to 

verify the rate-dependent fracture model. 

Material Properties Dimensions (m) 

Undamaged Properties  Fixed Cohesive Fracture Properties 

1 x 2 

Young's Modulus 

(Pa) 
6.09E+10 Initial Stiffness (Pa/m) 500 

Poisson's Ratio 0.15 
    
   

 (Pa) 10 

  
   

 (J/m2) 1 

              

Case 
Rate-

Dependent? 

Rate-Dependent Fracture Properties Loading Rate (m/sec) 

βT βG  ̇ 
   

 
(m/sec) 

Ux_rate Uy_rate 

Figure 10c 

No 0 0 - 

0 0.1 

Figure 10e 0.1 0 

Figure 10g 0.1 0.3 

Figure 11 

0 

0.1, 0.2 

Figure 12 

Yes 

-0.05 -0.05 

1 

0.01, 0.1, 1 

Figure 13a -0.05, 0, 0.05 0 0.1 

Figure 13b 0 -0.05, 0, 0.05 0.1 

Figure 14a -0.05, 0, 0.05 0 
0.01 

0.1 

Figure 14b 0 -0.05, 0, 0.05 0.1 

Figure 10c, 10e, and 10g show comparisons for simulations conducted under different 

fracture modes, i.e., mode I, mode II, and mixed-mode, respectively. Figure 10a shows the initial 

configuration of the uniaxial bar, and Figure 10b, 10d, and 10f show the boundary conditions 

applied on the three simulations. As clearly seen in Figure 10c, 10e, and 10g, both numerical and 

analytical results were identical for all three fracture modes. 
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To obtain the results shown in Figure 10,    and    (see Equations 38 and 39) were set 

to 0 and the cohesive zone model became rate-independent, i.e.,          
   

 and      
   

. To 

demonstrate that rate-independence of the cohesive zone properties for the case where    =    = 

0, the problem shown in Figure 10b was simulated one more time for a different value of applied 

strain rate, 0.05  /sec. Figure 11 shows the comparison of the results for both applied strain rates 

(0.05 and 0.10  /sec) and, as expected, no difference was observed in the results, since the 

fracture properties were not affected by the applied loading rate when    =    = 0.  

 

(a) 

Cohesive Element 
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   (f) 

 

 

   (g) 

Figure 10. A uniaxial bar problem to check the accuracy of the UEL implementation for 

different fracture modes: (a) Initial configuration; (b), (d), and (f) Boundary conditions; and (c), 

(e), and (g) Comparisons with analytical solutions. 
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 (b) 

Figure 11. Rate-independent behavior for T and G = 0: (a) Two different applied strain rates, 

i.e., 0.05 and 0.10   /sec; and (b) Identical mechanical responses to both applied rates. 

 Finally, to demonstrate the ability of the model to simulate rate-dependent fracture, new 

simulations were performed for  ̇ 
   

= 1 m/sec and    =    = - 0.05. Three different strain rates 

were applied to the uniaxial bar: 0.500, 0.050, and 0.005  /sec. Figure 12 shows that numerical 

and analytical results were identical for all three applied rates. 
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Figure 12. Rate-dependent behavior for T and G = -0.05 and three different applied strain rates, 

i.e., 0.005, 0.050, and 0.500  /sec. 

4.4. Sensitivity Analysis 

Extra simulations were performed to illustrate how parameters   ,   , and  ̇ 
   

affected the rate-

dependent model predictions. Figure 13a shows results for three different values of    (-0.05, 0, 

and 0.05) for    = 0. The results indicate that cohesive strength decreased (lower peak in the 

force-time curve) with the increase of    and that fracture energy was kept constant (for    = 0, 

     
   

) by adjusting the width of the curves. Figure 13b shows results for three different 

values of    (-0.05, 0, and 0.05) for    = 0. From the results, it is clear that the cohesive fracture 

energy decreased (narrower force-time curve) with the increase of    and that the cohesive 

strength was kept constant, as expected (for    = 0,          
   

).  

 The inversely proportional relation between cohesive fracture properties (     and   ) 

and rate-dependent parameters (   and   ) was due to the fact that the displacement rate 

experienced by the cohesive element, i.e.,  ̇  = 0.1 m/sec, was smaller than the assigned 
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reference displacement rate, i.e.,  ̇ 
   

 = 1 m/sec. In that case, the logarithmic terms of the 

expressions shown in Equations 38 and 39 became negative and resulted in fracture properties 

that were inversely proportional to the applied loading rates. As shown in Figure 14,      and    

became proportional to    and   , respectively, when  ̇  >  ̇ 
   

 (0.10 m/sec > 0.01 m/sec).   

 

(a) 

 

 (b) 

Figure 13. Rate-dependent fracture for  ̇ 
   

= 1 and various: (a) T and (b) G. 
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(a) 

 

(b) 

Figure 14. Rate-dependent fracture for  ̇ 
   

= 0.01 and various: (a) T and (b) G. 
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Chapter 5 

Experimental Program 

This research considers the heterogeneous HMA mixtures as materials composed of two distinct 

phases (see Figure 15): isotropic linear elastic aggregate particles and isotropic linear viscoelastic 

FAM mixture (asphalt binder + fine aggregate particles + air voids). To model fracture damage 

in the mixtures, cohesive zone elements were inserted within the FAM phase. This assumption of 

fracture only within the FAM phase was based on the observation that HMA mixtures at 

intermediate service temperatures without moisture damage generally tend to crack through the 

FAM phase.   

                     

Figure 15. Illustration of the two distinct phases of asphalt mixtures considered in this research, 

i.e., coarse aggregates (in gray) and FAM (in black). 

The testing methodologies followed to characterize the material properties of the 

different mixture phases considered in the research are presented below. Following the property 

characterizations, this chapter also presents experimental testing results of dynamic modulus of 
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asphalt mixtures that were used in a later chapter for the validation of the computational 

microstructure model presented in this research.  

5.1. Material Properties of Mixture Constituents 

5.1.1. Linear Elastic Properties of Aggregate Particles 

Young’s modulus of aggregate particles was measured using a nano-indentation technique 

(Khanna et al., 2003). The nano-nindentation tests were performed using a hard indenter with 

known mechanical properties and geometric characteristics. During the indentation process, the 

nano-indenter was pressed against the surface of the samples in multiple locations. Then, the 

load was held constant for a certain period of time and removed afterwards. The depth of 

penetration, h, was recorded and the area of indentation was determined using the known 

geometry of the indenter tip. Load and depth of penetration during the test were plotted on a 

graph to create a load-displacement curve (Figure 16b). From the unloading part of that curve, 

the contact stiffness, S (Equation 42), was calculated and used to estimate the modulus of 

elasticity of the aggregate samples, aE , using Equation 41. Figure 16a illustrates the indentation 

process. More details about the indentation process can be found in Karki (2010).  

 

 

(a) 

h 

Indenter 

Loading Holding the Load Unloading 
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(b) 

Figure 16. An illustration of the nano-indentation test: (a) Indentation process consisting of 

loading, holding and unloading steps; and (b) An example of a plot of load-depth of penetration 

used to determine sample stiffness. 

Several assumptions were made related to the nano-indentation technique, including: (1) 

purely elastic deformation upon unloading; (2) determination of the reduced compliance by 

combining the compliance of the aggregate specimen and of the indenter tip in a model with 

springs in series, as shown in Equation 41; and (3) determination of the contact stiffness by using 

Equation 42. 
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where S, A, rE , iE , aE ,    and    = contact stiffness, contact area, reduced modulus, indenter 

modulus (1,141 GPa in this study), elastic modulus of aggregates, Poisson’s ratio of the indenter 

(0.07 in this study), and Poisson’s ratio of aggregates. The contact stiffness was obtained by 

taking the slope of the experimentally measured stiffness of the upper portion of the unloading 

data (Oliver and Pharr, 1992). As shown in Figure 17, 20 measurements were made resulting in a 

mean aE of 60.9 GPa and a standard deviation of approximately 11 GPa. Poisson’s ratio (  ) was 

assumed to be equal to 0.15 (Barksdale, 1993). 

 

Figure 17. Nano-indention results of Young's modulus for aggregate particles (Karki, 2010). 

5.1.2. Linear Viscoelastic Properties of FAM Mixture 

The mixture used in this study was a FAM consisting of a PG 64-28 binder (13.3%) and fine 

aggregates (limestone and gravel) smaller than 0.6 mm and hydrated lime (1.5% of total mass of 

aggregates). Table 3 shows the FAM mixture gradation and Table 4 summarizes physical 

properties of materials and volumetric parameters of the mixture. The FAM mix design was 
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developed based on the volumetric mix design of its HMA mixture containing 4% of air voids 

(Karki, 2010). The binder content used in the design of the FAM mixture corresponded to the 

total amount of binder used in the HMA mixture minus the amount of binder that is absorbed 

into surface voids of aggregates larger than 0.6 mm and that covers those aggregates in thin films 

of 12  m. The selection of the FAM mixture for this study was based on several rationales, such 

as (a) it being well known that HMA mixtures at intermediate service temperatures without 

moisture damage tend to crack through the matrix phase, (b) testing repeatability of the FAM 

mixture is likely to be higher than that of highly heterogeneous HMA mixtures, and (c) testing 

results from the FAM mixtures can be directly applied to computational microstructure models 

that simulate the damage-related performance of HMA mixtures by accounting for the individual 

component properties and microstructural heterogeneity of the mixtures.  

Table 3. FAM mixture gradation. 

Material 
Sieve (% retained) 

#50 #100 #200 -200 

Screenings (limestone) 8.6% 7.9% - 12.5% 

3ACR (gravel) 11.4% 4.3% 25.0% 12.5% 

47B (gravel) 8.6% 9.2% - - 
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Table 4. Physical properties of materials and volumetric parameters of the FAM mixture 

Hydrated Lime 
  

Specific Gravity 2.343 
  

Dry Brightness, G.E. 92 
  

Median Particle Size - Sedigraph 2 micron 
  

pH 12.4 
  

BET Surface Area 22 m²/g 
  

-100 Mesh (150 µm) 100.0% 
  

-200 Mesh (75 µm) 99.0% 
  

-325 Mesh (45 µm) 94.0% 
  

Apparent Dry Bulk Density - Loose 22lbs./ft
3
 

  
Apparent Dry Bulk Density - Packed 35lbs./ft

3
 

  

    
        

Fine Aggregates 

Aggregate Gsb 

Absorption 

FAA (%) Capacity 

(%) 

Screenings (limestone) 2.478 3.66 46.7 

3ACR (gravel) 2.556 1.13 43.7 

47B (gravel) 2.605 0.49 37.3 

    

    
PG 64-28 Binder 

Test 
Temperature 

(°C) 
Test Result 

Required 

Value 

Unaged DSR, G*/sin  (kPa) 64 1.21 Min. 1.00 

RTFO - Aged DSR, G*/sin  (kPa) 64 3.01 Min. 2.20 

PAV - Aged DSR, G*sin  (kPa) 19 2,112 Max. 5,000 

PAV - Aged BBR, Stiffness(MPa) -18 181 Max. 300 

PAV - Aged BBR, m-value -18 0.32 Min. 0.30 

    

    
FAM Mixture 

  
Density (kg/m

3
) 2206.03 

  
Asphalt Content (%) 13.3 

  



www.manaraa.com

55 

 

Dynamic frequency sweep tests were conducted to identify linear viscoelastic material 

properties of the FAM phase. The PG 64-28 asphalt binder was blended with only fine aggregate 

particles (29% of limestone and 71% of gravel) smaller than 0.6 mm to create cylindrical FAM 

specimens of 50 mm in length and 12 mm in diameter. The process to fabricate these testing 

samples included several steps. First, aggregate particles were sieved. To remove the excessive 

amount of dust adhering to finer particles, one of the aggregates (fine limestone) had to be 

washed after the sieving step. Fine aggregates and asphalt binder were proportioned following a 

mix design procedure described by Karki (2010). Aggregates and binder were pre-heated to the 

mixing temperature of 146
o
C and mixed at 135

 o
C. A sample (80 mm in height and 150 mm in 

diameter) was compacted with a Superpave gyratory compactor (SGC) that applied a compaction 

pressure of 600 kPa at a speed of 30 gyrations per minute. The bulk specimens were sliced with a 

diamond saw machine and the top and bottom slices (15-mm-thick slices) were discarded. The 

testing specimens (50 mm in length and 12 mm in diameter) were cored out of the middle slice 

of the SGC sample. Figure 18 illustrates the several steps for the fabrication of the FAM 

samples. 

 

(a) 

 

  (b) 
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(c) 

 

 (d) 

 

 (e) 

 

 

(f) 

Figure 18. FAM sample fabrication process: (a) Aggregate sieving; (b) Mixing aggregates and 

binder; (c) Compacting a sample with a SGC compactor; (d) Sliced SGC sample; (e) Coring 

testing samples out of the middle section of the SGC sample; and (f) Testing sample. 

The specimens were then tested in a rheometer (see Figure 20) by applying a low 

torsional sinusoidal strain of 0.0065%, which is a level of strain within the linear viscoelastic 

range, with varying frequencies (0.01 to 25 Hz) at several different temperatures (5
o
C, 20

o
C, and 

40
o
C). Considering the FAM phase as a thermorheologically simple material, the well-known 

frequency (or time) - temperature superposition principle was employed to obtain the linear 
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viscoelastic master curves of the storage modulus in the frequency domain for a reference 

temperature of 20
o
C. Then, the whole master curve was slightly shifted to the reference 

temperature of 21
o
C. Figure 19 illustrates the process of master curve generation. 

  

(a) 

 

(b) 

Figure 19. Test results of storage modulus for three testing temperatures - master curve at a 

reference temperature of: (a) 20
o
C; and (b) 21

o
C. 
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Using the procedure described in other studies (Kim et al. 2003, 2005, 2006a, 2006b), the 

Prony series parameters in the storage modulus were used to define time-domain shear relaxation 

modulus. Poisson’s ratio of 0.35 was assumed. Table 5 shows the linear viscoelastic properties 

obtained for the FAM used in this study, i.e., spring constants and relaxation time in the 

generalized Maxwell model, Ei and i , respectively. 

 

Figure 20. Inside view of the rheometer used to obtain linear viscoelastic properties of FAM 

samples. 

 

 

 

 

 

 

 

Asphalt Matrix Sample 

(50 mm long, 12 mm diameter) 
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Table 5. Prony series coefficients of the matrix phase at 21
o
C 

i   Ei (MPa)      ρi (sec) 

1 3026.1 8.0E-05 

2 1484.1 8.0E-04 

3 1333.6 8.0E-03 

4 435.0 8.0E-02 

5 159.6 8.0E-01 

6 50.0 8.0E+00 

7 17.9 8.0E+01 

8 3.0 8.0E+02 

∞ 12.2 - 

5.2. Fracture Properties of FAM mixtures 

The convenient SCB geometry was selected for fracture testing. Originally developed to 

characterize the fracture behavior of rocks based on the concepts of Linear Elastic Fracture 

Mechanics (LEFM) (Chong and Kuruppu, 1984; Lim et al., 1994; Adamson et al., 1996), since 

the 1990s the SCB testing configuration has become a popular geometry for evaluating the 

fracture behavior of asphalt mixtures (Molenaar et al., 2002; van Rooijen and de Bondt, 2008; Li 

and Marasteanu, 2010) and was chosen for this study among other available geometries due to 

several benefits. The SCB testing is practically attractive - even if it has some limitations, such as 

the existence of an arching effect (Wagoner et al., 2005b) - in that it is very simple to perform, 

and multiple testing specimens can be easily prepared via a routine process of mixing and 

Superpave gyratory compacting of asphalt mixtures. Furthermore, the SCB geometry is even 

more attractive considering the fracture characteristics of field cores. 

SCB specimens were fabricated by slicing SGC samples and introducing a mechanical 

notch 2.5 mm wide and 25 mm deep, as shown in Figure 21.  Before testing, individual SCB 

specimens were placed inside the environmental chamber of a mechanical testing machine for 
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temperature equilibrium targeting the reference temperature of 21
o
C. Following the temperature-

conditioning step, various monotonic displacement rates were applied to the top centerline of the 

SCB specimens. Metallic rollers separated by a distance of 122 mm (14 mm from the edges of 

the specimen) were used to support the specimen. Reaction force at the loading application line 

was monitored by the data acquisition system of the mechanical testing machine. Opening 

displacements at the mouth and at the tip of the initial notch were also monitored with high-

speed cameras and a digital image correlation (DIC) system. Figure 22 shows the SCB testing 

set-up incorporating the high speed cameras and the DIC system. 

 

Figure 21. FAM specimen fabrication and laboratory fracture test. 

 

Compaction of FAM Specimen Fabrication Laboratory Testing 
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(a) 

 

       

 (b) 

Figure 22. Experimental testing set-up: (a) An overview of the whole testing set-up; and (b) A 

closer view of a SCB specimen ready to be tested. 

Concerning the fracture testing of SCB specimens subjected to constant displacement 

rates, the first step in developing the testing protocol was to determine a proper specimen 

thickness. This was motivated by the fact that expensive three-dimensional simulations can be 

closely approximated by two-dimensional simulations (such as a plane stress condition) if the 

specimen is thin enough to be subject to the plane stress fracture condition. Thin specimens are 

calibration panel 

SCB sample 

DIC cameras 

DIC light source 

roller supports 

DIC dot gauges 
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subject to plane stress loading at the crack tip, while thick specimens experience crack-tip 

triaxiality in the interior of the section. The stress state in the central region is essentially plane 

strain at distances from the crack tip that are small compared to the plate thickness. Near the free 

surface, the stress triaxiality is lower, but a state of pure plane stress exists only at the free 

surface. Based on this fact, three specimen thicknesses (25, 38, and 50 mm) were attempted for 

two different loading rates (50 mm/min and 100 mm/min), and test results were compared.  

Test results (in the form of force - loading time plots) from the three thicknesses at the 

two different loading rates generally demonstrated that 38 mm-thick specimens produced results 

that closely approximate those for the 25 mm-thick specimens by taking a ratio between two 

specimen thicknesses (i.e., 25/38). The same trend was not observed from the 50 mm-thick 

specimens with a thickness ratio of 0.50 (25/50). Test results indicated that two-dimensional 

simulations can be performed with test results of SCB specimens less than 38 mm thick when 

such simulations assume the plane stress condition. A similar finding was also reported in a 

study by Li and Marasteanu (2004), in which simulations of the SCB test demonstrated the 

existence of stresses in the out-of-plane direction for specimens with a thickness of 50 mm. 

Negligible out-of-plane stresses were observed from 25 mm-thick specimens. Based on the test 

results herein and the similar finding by Li and Marasteanu (2004), the fracture tests of the FAM 

mixture were conducted with 25 mm-thick SCB specimens. 

A total of eighteen, 25 mm-thick SCB specimens were then fabricated to investigate 

fracture characteristics of the FAM mixture within a wide range of loading rates. Nine different 

rates (1, 5, 10, 25, 50, 100, 200, 400, and 600 mm/min) were attempted in this study. For each 

loading rate, two replicates were tested at 21
o
C. Testing was highly repeatable without large 

discrepancies observed among the replicates. Figure 23 presents the SCB test results (two 
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replicates per loading rate) by plotting the reaction forces at the point of load application as the 

loading time increased. Due to the significantly different testing times necessary to complete at 

different individual rates, test results were plotted separately in three figures: Figure 23a shows 

results for loading rates 1, 5, and 10 mm/min; Figure 23b shows results for loading rates 25, 50, 

and 100 mm/min; and Figure 23c shows results for loading rates 200, 400, and 600 mm/min. 

Figure 24 shows averaged SCB test results of reaction force as a function of CTOD and CMOD 

(Figure 24a and Figure 24b, respectively) and reveals similar levels of critical displacements for 

all the rates, but an increase in the peak load as the loading rate increases. Clearly, the figures 

reveal the rate-dependent global mechanical behavior of the FAM mixture. 

 The rate-dependent mechanical response is related to several effects, such as the 

viscoelasticity of the FAM and the fracture characteristics throughout the fracture process zone 

(or cohesive zone). As noted earlier, test results are incorporated with numerical simulations that 

account for both material viscoelasticity and cohesive zone fracture process. This is done to 

separately identify the sources of rate dependency so as to better determine if the rate-dependent 

mechanical response is related to the fracture process. Cohesive zone fracture parameters 

determined through this experimental-numerical integrated approach can provide the rate-related 

fracture characteristics of the mixtures. 
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(c) 

Figure 23. SCB test results of force-time at the nine different loading rates: (a) 1, 5, and 10 

mm/min; and (b) 25, 50, and 100 mm/min; and (c) 200, 400, and 600 mm/min. 
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(b) 

Figure 24. SCB test results for four different loading rates, i.e., 100, 200, 400, and 600 mm/min: 

(a) Force-CTOD; and (b) Force-CMOD. 

5.3. Laboratory Tests with HMA Mixtures 

5.3.1. Dynamic Modulus 

Dynamic modulus tests were performed on cylindrical asphalt concrete specimens in the uniaxial 

testing mode (see Figure 25). Table 6 shows the proportions of the different aggregates used in 

the gradation of the asphalt concrete mixture. PG 64-28 binder (5.5%) and hydrated lime (1.5%) 

were also added to the mixture. Table 6 also shows volumetric characteristics of the mixture, 

which were within the limits specified by the Nebraska Department of Roads for a SP4 Special 

mixture.  
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Table 6. Asphalt concrete mixture gradation and volumetric properties. 

Material 
Sieve (% retained) 

1/2" 3/8" #4 #8 #16 #30 #50 #100 #200 -200 

5/8" LS (limestone) 5.0% 5.4% - - - - - - - - 

2A (gravel) - 0.6% 2.6% - - - - - - - 

Screenings (limestone) - - - 14.0% 15.0% 4.2% 1.2% 1.1% - 1.8% 

47B (gravel) - - - 4.0% - 0.7% 1.2% 1.3% - - 

3ACR (gravel) - - 6.8% 18.0% - 2.1% 1.6% 0.6% 3.5% 1.8% 

1/4" LS (limestone) - - 7.7% - - - - - - - 

 

 Property NDOR Limits Test Result 

Gmm - 2.431 

Gsb - 2.577 

Gmb - 2.336 

%Va 4 ± 1 3.9 

%VMA > 14 14.3 

%VFA 65 - 78 72.7 

%Pb - 5.5 

D/B 0.7-1.7 1.4 

 

The sample fabrication process was similar to that described above to obtain cylindrical 

samples of the FAM mixture. The SGC samples (170 mm in height and 150 mm in diameter) of 

the HMA mixture used in the study were cored with a coring machine and sliced with a diamond 

saw machine and the top and bottom slices (10-mm-thick slices) were discarded. To measure the 

displacement of gauge points glued to the specimens, three linear variable differential 

transformers (LVDTs) were mounted onto the surface of the specimen at 120
o
 radial intervals 

with a 100-mm gauge length. To reach the specified testing temperatures, the specimens were 

placed inside the environmental chamber of the universal testing machine used in the research. 

Steel disks were placed on the top and bottom faces of the specimens for the application of a 

uniformly distributed load to the specimens. The loading levels were carefully adjusted until the 
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strain levels were within the range of 50 - 75   . Vertical deformations averaged from the three 

LVDTs were used to calculate the dynamic modulus, defined simply as the ratio of the sinusoidal 

stress amplitude to the sinusoidal strain amplitude. As suggested in AASHTO TP 62-03, five 

temperatures (-10.0, 4.4, 21.0, 37.8, and 54.4 
o
C) and six loading frequencies (25.0, 10.0, 5.0, 

1.0, 0.5, and 0.1 Hz) were used. The frequency-temperature superposition concept was applied in 

order to develop a master curve representing the dynamic modulus of the HMA mixture, as 

shown in Figure 26.  

 

Figure 25. HMA specimen fabrication and laboratory test of dynamic modulus. 
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(a) 

 

(b) 

Figure 26. Dynamic modulus of the HMA mixture: (a) Testing results for each temperature; and 

(b) Master curve for a reference temperature of 21.0 oC. 
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Chapter 6 

Characterization of Cohesive Zone Fracture 

Process 

The viscoelastic nature of the asphaltic FAM phase creates a complication in identifying 

cohesive zone fracture properties. Part of the energy monitored by calculating the area below the 

experimental force-displacement (or loading time) curves is related to the energy dissipated due 

to the viscoelastic behavior of the FAM. Thus, fracture parameters along the fracture process 

zone should be identified locally, not by the global force-displacement results (Song et al., 

2008). Based on this fact, numerical simulations of the SCB tests were first conducted with the 

rate-independent bilinear cohesive zone model to determine the cohesive zone fracture 

parameters required to initiate and propagate cracks through the specimens. The results 

demonstrated the rate-dependence of the cohesive fracture properties. To account for that rate-

dependence in the FAM phase, further modeling of the SCB tests was performed using the newly 

developed rate-dependent cohesive zone model to calibrate the rate-dependent model parameters 

for cohesive strength and fracture energy. The calibrated model parameters were used as inputs 

for the simulation of more general structures (e.g., heterogeneous HMA samples), as shown in 

the next chapter. All simulations were performed assuming a plane stress two-dimensional 

approximation.  
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6.1. FEM Modeling of SCB Fracture Test 

A convergence study was first conducted to identify the appropriate size of cohesive elements to 

model the SCB fracture testing of the FAM specimens. Four different element sizes, i.e., 0.5, 1.0, 

2.0, and 5.0 mm were investigated. Figure 27 shows the four meshes generated for this study and 

Figure 28, the corresponding simulation results in the form of force-time graphics. Even though 

no major differences were observed, it appears that the simulation result was convergent for a 

cohesive element size smaller than 2.0 mm. Thus, an element size of 1.0 mm was chosen for the 

remaining simulations of the SCB tests. 

               

(a)                                                               (b)       

             

(c)                                                                    (d)  

Figure 27. Mesh convergence study for four cohesive element sizes: (a) 0.5 mm; (b) 1.0 mm; (c) 

2.0 mm; and (d) 5.0 mm. 
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Figure 28. Mesh convergence study - simulation results. 

Figure 29 presents the selected mesh and its corresponding boundary conditions used to 

model the SCB fracture testing of the FAM specimens. As shown, the mesh contains cohesive 

zone elements along the centerline of the virtual SCB specimen. The Prony series parameters 

obtained from the linear viscoelastic dynamic frequency sweep tests were used for the 

viscoelastic matrix elements, and the bilinear cohesive zone model illustrated in a previous 

chapter was used to simulate fracture in the middle of the matrix specimen as the opening 

displacements increased.  
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Figure 29. A finite element mesh and its boundary conditions to model the SCB testing. 

As previously mentioned, the behavior of the bilinear cohesive zone elements is such that 

there is a recoverable linear elastic behavior until the cohesive traction (T) reaches the cohesive 

strength (    ) in the traction-separation curve. When the traction reaches its maximum (i.e., 

cohesive strength) at the corresponding displacement   , damage starts to take place, and the 

ability of the cohesive zone elements to sustain traction is gradually reduced until it reaches a 

critical separation displacement,    . At that point, the complete dissipative and irreversible 

failure of the cohesive zone element is reached, and the process is repeated for the next cohesive 

elements. 

Besides cohesive strength, two other parameters define the shape of the bilinear traction-

separation model: the initial slope, K, and the cohesive fracture energy,   . The fracture energy 

(i.e., work of separation) is calculated by integrating the cohesive zone traction with respect to 

the separation distance (). The value of the initial slope K, has been determined through a 
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convergence study designed to find a sufficiently large K value to guarantee a level of initial 

stiffness that renders insignificant artificial compliance of the cohesive zone model. In theory, 

the cohesive elements should be rigid prior to the initiation of damage because unit surfaces 

representing the formation of cracks are only duplicated in the damaged bodies after the 

beginning of the fracture process, which is triggered by the cohesive damage initiation criterion 

and represented by the softening part of the traction-separation curves. Due to the complexity 

associated with numerical implementation of the initial rigidity, the recoverable part prior to 

damage initiation is generally included in the traction-separation curve; however, the effects of 

artificial compliance due to the pre-peak ascending region should be minimized. Thus, a 

convergence study was conducted to obtain the value of K, and it was observed that a numerical 

convergence can be met when the pre-peak slope is greater than 5e+12 Pa/m (or, alternatively, 

    smaller than 0.00052 - see Figure 30). This value was used for the remaining simulations.  

 

Figure 30. Convergence study to find the appropriate initial stiffness of cohesive elements. 
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Using the initial cohesive stiffness of 5e+12 Pa/m,      and    were determined for each 

loading rate via a calibration process between the simulation and test results. Cohesive zone 

parameters were adjusted until a good match between experimental results and numerical 

simulations was observed. Figure 31a and 31b present a strong agreement between the test 

results and numerical simulations. Validity of the cohesive zone properties determined herein 

was further verified from Figure 31c and 31d, where test results and numerical simulations for 

the crack (notch) mouth opening displacements (CMOD) and the crack (notch) tip opening 

displacements (CTOD) were plotted, respectively, as the loading time increased. As mentioned 

earlier, the CMOD and CTOD data were obtained from high-speed cameras of a DIC system. 

Figure 31 clearly demonstrates that the model parameters were accurately defined with no major 

discrepancies between the experimental and numerical results.  
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(d) 

Figure 31. Test results vs. numerical simulation: (a) and (b) Reaction force, (c) CMOD, and (d) 

CTOD; as the loading time increased. 

The two fracture parameters (     and Gc) identified at the local fracture process zone 

were plotted in Figure 32 as the applied loading rates varied. It appears that cohesive strength 

was fairly rate-independent until the loading rates are less than 50 mm/min, while the cohesive 

zone fracture energy generally increased as the loading rates became higher. The trends 

presented in Figure 32 infer that the rate-related nature of the fracture characteristics needs to be 

considered accordingly when modeling the mechanical performance of typical asphalt concrete 

mixtures and pavements in which a wide range of strain rates is usually associated due to the 

mixture’s significant heterogeneity and the various loading conditions.  
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Figure 32. Cohesive zone fracture parameters at different loading rates. 

The trends observed in Figure 32 are in accordance with what has been reported in 

several studies that attempt to characterize the rate-related fracture characteristics of adhesive 

and polymeric materials (Rahulkumar et al., 2000; Nguyen et al., 2004; Marzi et al., 2009). In 

those studies, both strength and fracture energy tended to be constant when cracks propagated at 
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level of crack velocity.  
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energy values obtained from the load-CTOD curve were closer to the values characterized at the 

fracture process zone than those obtained from the load-CMOD curve. This observation was 

expected since, as noted previously, the energy obtained from CMOD measurements may 

overestimate the true fracture toughness, as it includes other sources of energy dissipation such 

as material viscoelasticity, which is not related to the fracture process.  

 

Figure 33. Fracture energy characterized based on local fracture process zone, CTOD, and 

CMOD. 
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increased gradually as the cohesive zone elements separated. The energy dissipated by 

viscoelasticity increased before damage was initiated and afterwards stabilized. It is also obvious 

from the figure that the amount of energy dissipated by material viscoelasticity, in this particular 

case, is significant compared to the energy dissipated by the fracture process. Both sources of 

energy dissipation play important roles in the energy balance, which implies that each 

component should be considered separately with care when modeling fracture in viscoelastic 

media such as the FAM in this study.  
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 (b) 

Figure 34. Energy balance from SCB fracture simulation. 
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energy components such as the actual fracture energy and the energy dissipated during the 

deformation of the viscoelastic bulk material even at low temperatures. 

6.2. Characterization of Rate-Dependent CZ Parameters 

Figure 32 clearly demonstrates the rate-dependent fracture behavior of asphalt mixtures. As 

previously stated, the mere consideration of rate-dependence associated to the viscoelastic 

behavior of the bulk material is not enough to fully model the rate-dependent responses of the 

mixtures when those are subjected to damaging loads. Models that account for the local rate-

dependent fracture behavior at the fracture process zone of asphalt mixtures, such as the one 

presented in this dissertation, must be used to simulate the localized rate-dependent fracture 

characteristics of the mixtures. 

 To illustrate the need for the development of fracture models that account for both 

material viscoelasticity and local rate-dependent fracture characteristics, simulations of SCB 

tests at four different loading rates, i.e., 10, 25, 50, and 100 mm/min, were performed. For the 

first set of simulations (see Figure 35a), the bulk body was considered to behave elastically and 

fracture in the center line of the virtual SCB specimens was modeled as a rate-independent 

process. In the second set of simulations (see Figure 35b), the bulk body was modeled as a linear 

viscoelastic material, and fracture was again considered to be rate-independent. 

For both sets of simulations, fracture properties were first calibrated to generate a good 

agreement between simulation and test results for the applied loading rate of 10 mm/min. Then, 

the calibrated parameters were used to simulate the other three cases. From Figure 35a, it is clear 

that the assumption of material elasticity generated results that greatly deviated from the test 

results. The elastic model was not able to capture the increase in the peak load as the applied 
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loading rate increased. That limitation was somehow overcome with the consideration of the 

viscoelastic behavior of the bulk body. As shown in Figure 35b, faster loading rates resulted in 

curves with higher peak loads. However, a considerable mismatch was still evident between 

simulation and test results. This demonstrates that the consideration of material viscoelastic 

constitution for the bulk body is not enough to predict the fracture behavior of asphalt mixtures. 

Other sources of rate-dependence, such as the local rate-dependent fracture behavior at the 

fracture process zone of the mixtures, should also be considered in the model.  
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 (b) 

Figure 35. Simulation of SCB test for various loading rates considering: (a) Material elasticity 

and rate-independent fracture; and (b) Material viscoelasticity and rate-independent fracture. 

The rate-dependent characteristics of cohesive strength and fracture energy shown in 
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cohesive zone model and simulations of SCB tests considering material linear viscoelastic 
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Figure 36b. The good prediction shown in Figure 36b demonstrates that the calibration has been 

successfully accomplished. 

 

(a) 

 

 (b) 

Figure 36. Calibration of rate-dependent fracture functions: (a) Determination of function 

parameters; and (b) Prediction of test results for an intermediate loading rate. 
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Chapter 7 

Microstructure Modeling of HMA Mixtures 

In this chapter, the computational microstructure model was used to simulate different problems. 

First, simulations were performed to predict the dynamic modulus of HMA samples and the 

results were compared to test results obtained from laboratory experiments. Model predictions 

were also compared to dynamic modulus predictions made by other modeling approaches to 

demonstrate the potential of the proposed computational microstructure model. Then, the newly 

implemented rate-dependent cohesive zone fracture model was used to simulate fracture within 

the microstructure of virtual samples of HMA mixtures. Finally, parametric analyses were 

performed to demonstrate the ability of the rate-dependent model to account for the effects of 

important mixture variables on the mechanical behavior of the mixtures.  

7.1. Dynamic Modulus of HMA Mixtures 

Dynamic modulus, |E*|, has been employed by mechanistic-empirical pavement design protocols 

to compute the mechanical responses of pavement structures. One of these pavement design 

protocols was developed in 2004 by the American Association for State Highway and 

Transportation Officials (AASHTO) and was named as the Mechanistic-Empirical Pavement 

Design Guide (MEPDG). The material properties used to relate stresses and strains in the 

MEPDG software are Poisson’s ratio (generally assumed to be a constant value) and elastic 

modulus obtained from dynamic modulus master curves at a given temperature and loading 

frequency. Even if the two lower hierarchical input levels of MEPDG require only asphalt binder 



www.manaraa.com

87 

 

properties and mixture volumetric characteristics to predict |E*| using Witczak’s predictive 

equation (Witczak and Bari, 2004), the most accurate predictions can be made by performing 

laboratory dynamic modulus tests that provide level one stiffness characteristics in a dynamic 

modulus master curve form. Several standards and their adaptations have been used to obtain the 

dynamic modulus of asphalt concrete mixtures experimentally (ASTM D3497-79; AASHTO 

TP62; Kim and Seo, 2004). However, the determination of master curves in a wide range of 

loading frequencies and temperatures has been recognized as a time consuming process.  

In the attempt to reduce costs and time required to obtain the dynamic modulus master 

curves, researchers have been trying to predict the |E*| of the mixtures with semi-empirical 

(Andrei et al., 1999; Christensen et al., 2003; Bari and Witczak, 2006) and analytical (Hashin, 

1965; Christensen, 1969; Buttlar et al., 1999; Kim and Little, 2004; Huang et al., 2007; Shu and 

Huang, 2008) formulations. However, these approaches have generally shown significant 

limitations. Semi-empirical model parameters are generally applicable only to local material and 

environmental characteristics. On the other hand, analytical micromechanics models do not 

account for the actual geometric heterogeneity and interactions among components in the 

mixture.  

To overcome the generic limitations of the semi-empirical and analytical micromechanics 

predictive approaches, computational microstructure modeling has actively been pursued. One of 

the advantages of this modeling approach is that it can account for the effect of mixture 

heterogeneity by dealing with mixture constituents (e.g., aggregates, asphalt binder) separately. 

The computational microstructure method also allows a more comprehensive examination of the 

microstructural, inelastic material behavior of the mixtures so that stresses and strains within the 

mixture microstructures can be analyzed more realistically. Several studies (Masad et al., 2001; 
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Papagiannakis et al., 2002; Dai and You, 2007; Aragão et al., 2009a, 2009b, and 2010; Aragão 

and Kim, 2010) proposed finite element method (FEM)-based models, and an explicit numerical 

technique, called the discrete element method (DEM), has also been employed by several 

researchers (Abbas and Shenoy, 2005; You and Buttlar, 2006; You et al., 2009).  

Although several computational microstructural attempts have shown success, to a 

certain extent, for predicting the dynamic modulus of asphalt concrete mixtures for the past 

decade, most of the work found in the open literature has used low-temperature testing 

conditions, in which there is a smaller dissipation of energy. Consequently, the material behaves 

much more elastically. Thus, this research focused on the characterization of dynamic modulus 

master curves of asphalt concrete mixtures at intermediate reference temperatures, where the 

temperature- and rate-dependent viscoelastic characteristics are much more evident. Two popular 

semi-empirical models (Witczak’s model (Bari and Witczak, 2006) and the modified version 

(Christensen et al., 2003) of the Hirsh’s model (Hirsch, 1962)), an analytically developed 

micromechanics model by Hashin (Hashin, 1965), and the computational microstructure 

approach based on the FEM technique were investigated. Table 7 shows the input parameters 

required by the semi-empirical and analytical models evaluated. Model predictions were 

compared with dynamic modulus test results obtained from cylindrical asphalt concrete 

specimens in a wide range of loading frequencies at the target temperature of 21
o
C. The 

predictive power of each approach was compared and discussed.  
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Table 7. Input parameters required by the semi-empirical and analytical models evaluated. 

Model INPUTS 

Hashin 

m 0.35 

Gp (Pa) 2.2E+10 

Vp 0.866 

Witczak 

200 (%) 4.9 

4  (%) 27.6 

38  (%) 10.8 

34  (%) 0.0 

Va (%) 3.9 

Vbeff  (%) 10.4 

Modified 

Hirsch 

VMA (%) 14.3 

VFA (%) 72.7 

 

 

To accomplish the analytical micromechanics and the computational microstructure 

modeling, asphalt concrete microstructure is necessary. Two-dimensional microstructure of the 

asphalt concrete mixtures was obtained by using a digital image process of scanned images taken 

from sawn Superpave gyratory compacted (SGC) samples (150 mm in diameter and 170 mm 

tall). The compacted cylinders were cut along a vertical plane to reveal the two-dimensional 

cross-section of the samples. Then, an image treatment process was performed to convert the 

virgin image (in gray scale) to a binary format (black and white representing the FAM and the 

aggregates, respectively). The portion of the aggregate gradation finer than 0.30 mm was not 

distinctively captured by the digital image processing. Therefore, the black portion mixed with 

particles smaller than 0.30 mm was considered to be the FAM phase (asphalt cement mixed with 

aggregates less than 0.30 mm and entrained air voids). Figure 37 shows a digital image of an 

asphalt concrete mixture (100 mm wide and 150 mm tall) after the digital image treatment has 

been applied. The treated image was then analyzed to quantify the volume fractions of 
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aggregates in the mixture, because the volume fraction of aggregates (Vp) was used in the 

Hashin’s analytical micromechanics model (described in a previous section).  

               

Figure 37. Asphalt concrete microstructure after digital image treatment. 

 As shown in Figure 37, two distinct phases (aggregates larger than 0.30 mm signified in 

white and FAM phase in black) appeared. Therefore, laboratory tests were conducted to 

characterize the material properties of each phase in the mixtures. The experimental results were 

then used as model inputs for the analytical micromechanics and the computational 

microstructure models (Hashin’s analytical model and the FEM-based computational model, 

respectively). The material properties required for the models were the linear elastic properties of 

aggregate particles larger than 0.30 mm and the linear viscoelastic properties of the FAM phase, 

both obtained as described in an earlier chapter.  

With the treated digital image of mixture microstructure and the material properties of 

each individual mixture constituent, computational microstructure modeling could be conducted. 

In order to simulate the complex geometry of the microstructure most accurately, the digital 
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image was discretized to produce 382,704 three-node linear triangular elements; this could 

represent the smallest aggregate particles (0.30 mm) as a distinctive element. For this particular 

study, a two-dimensional approximation of the three-dimensional mixtures was adopted because 

of the significant geometric complexity. Although real events are three-dimensional in nature, a 

great deal can still be learned from a two-dimensional simplification of the problem. Two-

dimensional modeling can provide computational efficiency, and it is a necessary step towards 

the understanding of global three-dimensional performance.  

Isotropic symmetry was considered for both the FAM mixture and the aggregate 

particles, which were modeled to be linear viscoelastic and linear elastic materials, respectively. 

Air voids were not explicitly considered in the current model. As an entrained form in the FAM 

phase, air voids were indirectly considered by equating the apparent density of the FAM to the 

black portion in the asphalt mixture microstructure. Better representation of air voids in the 

model remains as future work.   

For the FEM simulation, commercial software ABAQUS (2008) was used. With the mesh 

developed, boundary conditions were applied to constrain the vertical displacements (UY) of the 

nodes at the bottom (see Figure 38). A compressive haversine load (TY) was evenly applied to the 

top nodes. To construct a dynamic modulus master curve, a wide spectrum of loading 

frequencies was simulated (10
-4

 to 10
4
 Hz). Averaged vertical deformations from the two sets of 

virtual gauge points (shown in Figure 38) were used to calculate the dynamic modulus, defined 
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simply as the ratio of the haversine stress amplitude to the haversine strain amplitude. 

 

Figure 38. FEM mesh, virtual gauges, and boundary conditions imposed for simulations. 

Figure 39 shows dynamic modulus comparisons between each of the predictive models 

and the experimental data. In general, all predictive models were in fair agreement with the test 

results. Hashin’s model under predicted the dynamic modulus at lower frequencies and over-

predicted at higher loading frequencies. The worst predictive power of Hashin’s model was 

expected given that it does not account for the geometric complexity of graded particles and 

contacts among materials. Witczak’s equation simulated dynamic moduli greater than laboratory 

test results. A vertical shift between the prediction and measurement was observed. The modified 

Hirsch model typically produced lower moduli than the test, but the deviation between the two 



www.manaraa.com

93 

 

was not significant. Comparison between experimental results and the FEM microstructure 

model presented a relatively higher deviation at lower loading frequencies but better predictions 

when the loading frequency was larger. Several factors are related to the deviation, including 

some clear model limitations such as (a) no explicit consideration of air voids within the 

mixtures, (b) lack of aggregate-aggregate contact, and (c) two-dimensional simplification of the 

three-dimensional problem. 

 

Figure 39. Comparison of dynamic moduli obtained from different approaches. 

To investigate the predictive power of each model in a more distinctive manner, the 

predicted dynamic moduli obtained from each model were cross-plotted to the experimental 

dynamic moduli, and the results are shown in Figure 40. As shown in the figure, the modified 

Hirsh model and the FEM model exhibited a relatively small deviation from the line of equality. 

Hashin’s model deviated from the line of equality gradually from lower frequencies (producing 

low moduli) to higher frequencies (producing higher values of modulus).  
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Figure 40. Cross-plots between experimental dynamic moduli and predictions from each model.  

In spite of the aforementioned limitations of the current version of the FEM model, the 

results presented in Figure 40 indicate the high potential of the computational microstructure 

modeling technique. Computational microstructure modeling has been regarded as an excellent 

tool for a closer analysis of the stresses and strains within the microstructure of the mixture, 

which is not possible with the other models presented here. Furthermore, the FEM 

microstructure model seems to be the best predictive model for evaluating the changes in the 

overall mixture stiffness given any changes in the mixture composition and 

mechanical/geometric characteristics of mix components. 
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7.1.1. Parametric Analysis 

 A parametric analysis was conducted in this study to illustrate the ability of the computational 

microstructure model to evaluate the effect of mechanical properties of different mixture 

constituents on the overall dynamic modulus of the mixture. First, simulations were conducted to 

evaluate the effect of asphalt content, which affects mixture volumetrics such as Vbeff, VMA, and 

VFA. Two different binder contents (11.5% and 15.4% by total mass of the FAM) were 

evaluated with a constant aggregate modulus of 60.9 GPa. From the results shown in Figure 41, 

it is obvious that the binder content and corresponding mixture volumetrics play an important 

role in the dynamic modulus of mixtures. The use of the FAM properties with higher binder 

content resulted in lower dynamic modulus values, as expected. The second parametric study 

was performed by varying aggregate stiffness with three different elastic moduli (20.0, 50.8, and 

60.9 GPa), with the same amount of binder content, 15.4%. The simulation results shown in 

Figure 42 infer that the stiffness of the aggregates strongly affected the overall stiffness of the 

mixtures.  
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Figure 41. Parametric analysis on binder content in the FAM phase. 

 

Figure 42. Parametric analysis on aggregate stiffness. 
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7.2. Rate-Dependent Fracture of HMA Mixtures 

As previously described, asphalt concrete mixtures are particulate composites in which a rigid 

skeleton of aggregate particles is held together by a softer phase of FAM mixture that is 

composed of asphalt binder, air voids, and fine aggregates. To predict the mechanical behavior 

of these heterogeneous and viscoelastic composites that experience damage at different length 

scales, several researchers have proposed various computational predictive models based on the 

discrete and the finite element methods. These computational microstructure models have 

stronger scientific basis than empirical methodologies that are based on statistical analyses of 

regional and case-specific databases. In comparison to other computational approaches, such as 

those based on the continuum damage mechanics theory, the computational microstructure 

models are also advantageous because they account for diverse complexities (e.g., material 

inelasticity, heterogeneity, anisotropy, multiple damage forms). Additionally, computational 

microstructure models can greatly reduce the costs associated with laboratory experiments 

because they generally only require individual mixture constituent properties as model inputs. 

The accuracy of such microstructural models greatly depends on the level of 

understanding of the physics of the real problem and on how well the computational models 

simulate those physical characteristics. These characteristics include the heterogeneity and 

random distribution of aggregate particles, the inelasticity of the FAM, the large size of the 

plastic zones around the crack tips of the damaged mixtures, and the rate-dependent 

characteristics of those fracture zones. Various models have included some of these features, but 

these models have rarely considered the rate-dependent fracture behavior of the mixtures. This 

rate-dependent behavior is not exclusively related to the inelasticity of the bulk material. Thus, 

the mere consideration of viscoelastic constitution for the bulk body is not enough to fully 
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describe the rate-dependent damage behavior of the mixtures. Instead, the rate-dependence of 

their fracture process zones should be investigated as a separated phenomenon and properly 

considered in the models. 

To appropriately model that rate-dependent damage behavior, first appropriate fracture 

test methods should be used. Additionally, research efforts are also required for a better 

understanding of the fracture characteristics of the mixtures when those are subjected to 

intermediate temperature conditions. Therefore, this research has proposed a modeling approach 

based on the cohesive zone concept that combines experimental results and computational 

modeling of tests with SCB specimens to characterize rate-dependent fracture characteristics of 

asphalt mixtures at intermediate temperature conditions.  

To demonstrate the ability of the rate-dependent fracture model to simulate rate-related 

fracture in HMA mixtures, simulations of a three-point-bending test were performed by applying 

different levels of displacement rates to the top center point of virtual HMA samples. Table 8 

summarizes the input parameters used in the simulations. 
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Table 8. Model inputs for HMA fracture simulations 

Undamaged Properties Dimensions (mm) 

Linear Elastic Properties of 

Coarse Aggregates 
Linear Viscoelastic Properties of FAM 

150 x 60 

Young's 

modulus 

(Pa) 
6.09E+10 

i Ei (MPa) ρi (sec) 

1 3026.1 8.00E-05 

2 1484.1 8.00E-04 

3 1333.6 8.00E-03 

4 435 8.00E-02 

Poisson's 

ratio 
0.15 

5 159.6 8.00E-01 

6 50 8.00E+00 

7 17.9 8.00E+01 

8 3 8.00E+02 

∞ 12.2 - 

        

Case 

Rate-Dependent Fracture Properties of FAM 
Loading rate 

(mm/min) βT βG     
   

  

(MPa) 
  
   

  

(kJ/m2) 
 ̇ 
   

 
(m/sec) 

Figure 44a 0.20 0.50 

1.0 1.0 

4.0E-08 

10, 25, 50 

Figure 45a 0.20, 0.30, 0.40 0.50 

50 
Figure 45b 0.40 0.50, 0.70, 1.00 

Figure 45c 0.40 0.50 0.5, 0.8, 1.0 1.0 

Figure 45d 0.40 0.50 1.0 1.0, 1.5, 2.0 

Figure 49 0.15 0.15 0.5 0.2 100 

 Figure 43a shows the heterogeneous microstructure, FE mesh, and boundary conditions 

of the first virtual sample of HMA used in this section. Figure 43b shows the central region of 

the virtual specimen (15 mm x 55 mm) where cohesive elements were inserted within the FAM 

phase because fracture in asphalt mixtures subjected to intermediate temperature conditions 

typically occurs within the FAM phase. The decision to limit the area of potential fracture to the 

central region of the specimens was made to reduce the artificial compliance effects inherently 

produced by intrinsic cohesive zone models, such as the one used in this research, that are 

intensified with the increase of the number of cohesive elements in the meshes. Additionally, 



www.manaraa.com

100 

 

preliminary tests conducted in laboratory with beams of HMA mixtures revealed that fracture is 

limited to that central region. Thus, the insertion of cohesive elements within the whole 

microstructure of the virtual beams was unnecessary and would increase the computational cost 

of the simulations. 

 Figure 43c shows an example of a fractured beam and demonstrates the ability of the 

model to simulate crack propagation within the heterogeneous microstructures of the mixtures. 

The inter-granular cracking evolution is in fact one of the important features of computational 

microstructure models as it allows such models to predict the local fracture characteristics of the 

mixtures in a more realistic way than other computational models based on the continuum 

damage approach. Such microstructure models can also be used to evaluate the effects of 

material properties of mixture components and geometric characteristics of aggregate particles 

on the fracture behavior of the mixtures without the need for additional expensive and time-

consuming laboratory performance tests. 

Figure 44a presents simulation results by plotting the reactive force as a function of 

loading time for three different loading rates: 10, 25, and 50 mm/min. Clearly, rate-dependent 

fracture behavior is observed as slower loading rates produced more compliant responses than 

faster loading rates. Figure 44a also shows simulation results using rate-independent cohesive 

fracture properties. The figure reveals that the overall rate-dependent behavior of the sample was 

much more evident when the rate-dependent fracture characteristics of the mixtures were 

considered in the simulations. This was also observed in a study by Aragão and Kim (2010). In 

that study, the authors demonstrated that the use of rate-independent cohesive fracture properties 

to predict the fracture behavior of viscoelastic and heterogeneous asphalt mixtures generated 

predictions that greatly deviated from test results. Different sets of cohesive fracture properties 
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were required to match test results for different displacement rates applied to the testing 

specimens. Extra efforts are needed to validate the proposed model via the comparison with 

experimental test results of real HMA samples. The validation process is currently in progress 

and significant findings will be presented in the near future.   

Another advantage of the computational microstructure modeling approach is that it 

allows a more comprehensive examination of the microstructural, inelastic material behavior so 

that stresses and strains within the microstructure can be analyzed more realistically. To illustrate 

that capability, Figure 44b to 44g show progressive microstructural fracture and stress (S11) 

contour plots at simulation times ranging between 4 and 14 seconds for the applied displacement 

rate of 25 mm/min. The contour plots revealed that there was a higher concentration of stresses 

on the stiff aggregate particles. High stress levels were also observed around the tip of the crack. 

Stress levels were drastically reduced at the bottom of the beam after the formation of the macro-

crack within the sample microstructure. 

 

  

 

(a) 
150 mm 

122 mm 

Uy(t) = ctH(t) 

60 mm 
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 (b) 

 

(c) 

Figure 43. Simulation of a three-point-bending test: (a) FEM mesh and microstructure of virtual 

HMA beam sample; (b) Central region of the virtual specimen where cohesive elements are 

inserted within the FEM mesh; and (c) An example of a crack path within the heterogeneous 

microstructure of the beam. 
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(g) 

 

Figure 44. (a) Virtual beam simulation results demonstrating rate-dependent fracture; and 

Progressive microstructural fracture and stress (S11) contour plots at: (b) 4 sec; (c) 6 sec; (d) 8 

sec; (e) 10 sec; (f) 12 sec; and (g) 14 sec. 

7.2.1. Parametric Analysis  

The deeper understanding of the effects of small-scale material and mix design properties on the 

behavior of asphalt mixtures is a fundamental step towards the design of more resistant and long-

lasting mixtures. Thus, the primary goal of this research is to develop a computational 

microstructure modeling framework that will eventually allow researchers and practitioners of 

the pavement mechanics community to evaluate the effects of component properties and mix 

design characteristics (some of the key factors directly affecting the quality of the pavement 

structures) on the mechanical responses of asphalt mixtures.  

Among the important variables that affect the mechanical behavior of the mixtures, one 

can mention volume fraction of aggregate particles. Fracture characteristics of the FAM mixture 

phase also play a major role on the damage behavior of the mixtures. Thus, this section presents 

 

14 sec 
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a sensitivity analysis that illustrates how these parameters affect the overall mechanical behavior 

of the mixtures.  

7.2.2. Rate-Dependent Fracture Properties 

 

The two cohesive fracture parameters that mostly influence the overall mixture responses are the 

cohesive zone strength and the cohesive fracture energy. Therefore, this section presents 

sensitivity analysis results for the parameters   ,   ,     
   

 and   
   

that define the functions 

relating cohesive strength and fracture energy to the rate of displacement jumps  (see Equations 

38 and 39) experienced by each cohesive element in the FEM meshes. For this parametric 

analysis, the beam shown in Figure 43a was used and the simulations were conducted at a rate of 

50 mm/min.  

 Figure 45 presents the sensitivity of the force-time curve to the four rate-dependent 

parameters investigated. From the analysis of Figure 45a and 45c, it is clear that as    or 

    
   
 increased, the peak load also increased. This was expected because damage initiation is 

retarded when larger strength values are specified to the cohesive elements. On the other hand, 

the analysis of Figure 45b and 45d reveals that as    or   
   

 increased, the fracture resistance of 

the mixture also improved, which was demonstrated by the larger area under the force-time 

curve. This analysis clearly demonstrated that the rate-dependent fracture model developed 

herein successfully identified the influence of component fracture properties to the overall 

mixture damage behavior. 
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(c) 

 

(d) 

Figure 45. Parametric analysis for rate-dependent fracture parameters: (a) T; (b) G; (c)     
   

; 

and (d)   
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 To further illustrate the effects of the rate-dependent fracture parameters on the fracture 

behavior of the mixtures, an additional analysis comparing progressive fracture damage levels 

experienced by the beam at different stages of the simulations was also conducted. Figure 46 

shows comparisons for two different     
   

, i.e., 0.5 MPa and 1.0 MPa. As expected, the analysis 

of Figure 46a and 46b reveals that the beam experienced premature damage initiation for a lower 

    
   

 (0.5 MPa). Damage also propagated faster in the beam when a lower     
   

 was assigned, as 

demonstrated in Figure 46c to 46f. Finally, Figure 47 shows comparisons for two different   
   

, 

1000 J/m
2 

and 2000 J/m
2
. Damage now initiated at similar simulation stages for both cases, as 

demonstrated in Figure 47a to 47d. However, as shown in Figure 47e and 47f, after the initiation 

of damage, crack propagation was much faster for the case with smaller   
   

, as less energy was 

required to fully separate the two faces of each cohesive zone element in the mesh. 

 

(a) 

0.5 MPa 

2.5 sec 
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(e) 

 

(f) 

 

Figure 46. Progressive microstructural fracture at three simulation times, i.e., 2.5, 4.0, and 6.0 

seconds for two different     
   

: (a), (c), and (e) 0.5 MPa; and (b), (d), and (f) 1.0 MPa. 
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(f) 

 

Figure 47. Progressive microstructural fracture at three simulation times, i.e., 2.5, 4.0, and 6.0 

seconds for two different   
   

: (a), (c), and (e) 1000 J/m
2
; and (b), (d), and (f) 2000 J/m

2
. 

7.2.3. Volumetric Characteristics of Aggregates 

Two two-dimensional microstructures of samples of asphalt concrete mixtures were generated to 

evaluate the effect of volumetric characteristics of aggregate particles on the fracture behavior of 

HMA mixtures. The microstructures differed on volume fraction of aggregate particles. For the 

analysis herein, two different values of aggregate volume fraction (qualitatively named as low 

and high volume fractions) were used to generate the two microstructures.  

To simulate the complex geometry of the microstructures, finite-element meshes were 

generated with triangular elements measuring approximately 1 mm within the central region of 

the virtual beams and 2 mm outside that region. The objective of the higher refinement level at 

the central region was to maintain the geometric characteristics (e.g., angularity) of the particles. 

Additionally, it is important to have a higher refinement level in the regions with higher potential 

for crack initiation and propagation because the possible crack paths are limited by the topology 

2000 J/m
2
 

6.0 sec 
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of the finite-element mesh. This mesh-dependence problem can be alleviated with the use of 

more refined meshes close to the evolving crack tips. However, the use of excessively refined 

meshes may result in very expensive computational cost and may also intensify the problem of 

artificial compliance that is inherent to intrinsic cohesive models.  

The two finite-element meshes generated for the parametric analysis are shown in Figure 

48a and 48c. To avoid the effects of the artificial compliance due to the use of an intrinsic 

cohesive zone model, similar numbers of cohesive elements (2414 and 2170, respectively) were 

assigned to the meshes. Figure 49 presents the sensitivity of the force-time curve to the volume 

fraction of aggregate particles. Figure 50 shows snapshots of the virtual beams at a simulation 

time of 0.54 seconds and illustrates the different levels of microstructural damage experienced by 

the beams. Figure 50 also shows contour plots of stress tensor component S11. The contours 

reveal a higher concentration of stress at rigid aggregate particles and around the crack tips.  

From Figure 49, it is clear that both initial stiffness and strength of the mixture increased 

as the volume fraction of aggregates increased (i.e., sample 48a vs. sample 48b). The figure also 

shows that damage started earlier for the beam with higher concentration of aggregate particles 

(sample 48a). That was expected because the higher concentration of stiff particles increases the 

levels of stress in the FAM around the particles. Thus, the cohesive damage initiation criterion is 

met sooner and macro-cracks form and propagate earlier than they would form and propagate in 

a sample with fewer particles.  
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(a)                                      

   

 (b) 

Figure 48. Parametric analysis - FEM mesh and microstructure of virtual HMA beam samples: 

(a) Low volume fraction of aggregates and; (b) High volume fraction of aggregates. 
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Figure 49. Parametric analysis for volume fraction and angularity of aggregates. 
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(b) 

Figure 50. Virtual beams - microstructural damage and stress contour plots (S11) at simulation 

time 0.54 seconds.  
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Chapter 8 

Conclusions and Future Work 

This study presents the development of a computational microstructure modeling framework that 

combines laboratory experiments and numerical simulations to predict the mechanical behavior 

of heterogeneous and inelastic asphalt mixtures that exhibit rate-dependent fracture. The model 

takes advantage of the microstructural approach in the sense that it only requires material 

properties of mixture constituents for the simulation of asphalt mixtures. This will eventually 

result in considerable savings in both time and cost because the model can significantly reduce 

time-consuming and expensive laboratory performance tests to characterize damage in the 

mixtures. Another advantage of the computational microstructure modeling approach is that it 

allows a more comprehensive examination of the microstructural, inelastic material behavior so 

that stresses and strains within the microstructure can be analyzed more realistically. 

HMA mixtures were assumed to be a dual-phase composite comprised of aggregate 

particles embedded into a phase of FAM. Material properties of the two phases required as inputs 

for the computational model are obtained from simple and expedited laboratory tests. An image 

treatment process is used to generate finite element meshes that closely reproduce the geometric 

characteristics of aggregate particles distributed within the FAM phase.  

Using the proposed computational microstructure model, the dynamic modulus of a 

dense-graded asphalt mixture is predicted. Model predictions are compared to test results and to 

predictions obtained from other modeling approaches, i.e., the popular model proposed by 
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Witczak, the modified Hirsch’s model (two semi-empirical models) and the analytical 

micromechanics model by Hashin. The results of the analysis showed that all predicting models 

investigated in this research were in fair agreement with the test results. In particular, Witczak’s 

equation simulated dynamic moduli somewhat greater than laboratory test results, whereas the 

modified Hirsh model generally under predicted moduli. The FEM microstructure model 

presented a relatively higher deviation at lower loading frequencies, but it showed better 

predictions as the loading frequency was higher. Hashin’s analytical micromechanics model 

showed the worst performance, which was due to the geometric simplifications and assumptions 

that were made.  

Another interesting feature of the model is the consideration of rate-related fracture 

characteristics of the mixtures, which is a phenomenon that has been reported by other 

researchers in the open literature and confirmed by simulations of experimental fracture tests 

performed in a wide range of loading rates. To account for the rate-dependent fracture 

characteristics of the mixtures, a bilinear rate-independent cohesive zone model was extended to 

its rate-dependent version and implemented in the form of a user-element (UEL) subroutine that 

was incorporated into the mainframe of the commercial finite element software ABAQUS. Extra 

simulations of experimental fracture tests were performed to calibrate the rate-dependent fracture 

properties. The calibrated rate-dependent properties were used to simulate fracture in general 

HMA microstructures. A parametric analysis was also conducted to demonstrate the ability of 

the rate-dependent fracture model to evaluate the effects important mixture parameters such as 

rate-dependent properties of the FAM phase and volume fraction of aggregate particles on the 

mechanical behavior of the mixtures.  
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Further advancements, such as the consideration of air voids as a separate phase, the 

characterization of mode-dependent fracture properties, and the extension of the two-

dimensional model to its three-dimensional version, are required to improve model predictions. 

Extra work is also required to validate the rate-dependent fracture model. However, the 

outcomes of this research have demonstrated that a successfully developed model such as the one 

herein can be an efficient analysis-design tool in that mechanical properties and performance of 

any macroscopic mixture can be predicted if properties of the mixture constituents and boundary 

conditions are known and considered. In other words, virtual testing through the model can 

potentially replace expensive laboratory tests.  
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